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REMARKS ON CRITERIA FOR THE EXISTENCE OF A

POSITIVE EQUILIBRIUM IN REACTION NETWORKS†

S. M. CHOO

Abstract. It is interesting to know the behavior of a network from its
structure. One interesting topic is to find a relation between the existence
of a positive equilibrium of the reaction network and its structure. One
approach to study this topic is using the concept of deficiency. Another
is using some conditions on nodes, which can apply to large-size networks
compared to deficiency. In this work, we show the relation between defi-
ciency and the conditions.
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1. Introduction

Many systems including biological and chemical systems are studied by their
mathematical models using differential equations. To construct such a model,
we need to know some quantitative information like the type of reactions and
the values of the parameters involved in each reaction. However, it is not easy
to have the information. Thus it is important to find some relation between the
functionality of a network and the network structure.

The existence of a positive equilibrium of the reaction network was studied
by its structure using the concept of network deficiency ([3],[4]). Other structure
conditions based on the injectivity property have been presented in recent pa-
pers ([1],[2]) to determine whether networks have the capacity for more than one
steady state. It is not easy to apply the concept of deficiency to large-size net-
works. So the author used another conditions (P1)–(P2) on nodes ([6]) instead
of deficiency to obtain the same result as using the concept of zero deficiency.
(P1)–(P2) are easy to apply to large-size networks compared to deficiency.
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In this paper, we present the connection between zero deficiency and the
conditions (P1)–(P2). Deficiency and (P1)–(P2) are defined in Section 2. We
define a network of interest and some notations, which will allow us to show
the relation mathematically. In Sections 3, we show that (P1)–(P2) implies zero
deficiency but the converse is not true.

2. Preliminaries

In this section, some notations and a network of interest are defined. And we
also introduce Lemma 1 and Lemma 2 to show that we can use (P1)–(P2) to
obtain the same result as using deficiency.

Definition 1. A chemical reaction network consists of three finite sets:

i) a set S of elements called the species of the network.

ii) a set C of functions in PS called the complexes of the network.
iii) a relation R ⊂ C × C having the following properties:

a) (y, y) 6∈ R for all y ∈ C.
b) For each y ∈ C, there exists y′ ∈ C such that (y, y′) ∈ R or (y′, y) ∈ R.

Here P means the set of nonnegative real numbers, P = P − {0} , and PS

the vector space of nonnegative real-valued functions with the domain S. The
element (y, y′) ∈ R denotes a reaction y → y′ called a directed arrow from y to
y′.

Using Definition 1, we can assign each network to a directed graph with
complexes and reactions as nodes and directed arrows, respectively. Throughout
this work, a network means a chemical reaction network or its directed graph if
there is no specific comment about the network.

A network is weakly reversible if each directed arrow is contained in a directed
arrow circle. The network in Fig.1 is not weakly reversible because there is no
directed arrow circle containing A→2B.

For species A, B and positive real numbers ra, rb, the complex raA+rbB ∈ PS
means (raA + rbB)(A) = ra, (raA + rbB)(B) = rb and (raA + rbB)(s) = 0 if
s 6∈ {A,B}. For simplicity, we will assume y(ys) = 1 for all complexes y and
species ys with y(ys) > 0 without loss of generality.

The differential equation corresponding to a chemical reaction network (S, C,R)
with a kineticsK can be written as the vector form dc

dt =
∑

R Ky→y′(c) (y′ − y), c ∈
PS where Ky→y′ : PS → P and Ky→y′(c) is the kinetics of the reaction y → y′

at c. And c∗ is called a positive equilibrium if 0 =
∑

R Ky→y′(c∗) (y′ − y).
Let y ∼ y′ denote y → y′ or y′ → y. Then this is an equivalence relation on

C which induces equivalence classes called the linkage of classes of the network.
The rank of the network is the rank of the set {y − y′|y → y′ ∈ R}. Deficiency
for a chemical reaction network is defined by n − ` − r where n, `, r are the
number of complexes, the number of linkage classes, and the rank of the network,
respectively. More details and the proof of Lemma 1 can be found in [3].



Remarks on criteria for the existence of a positive equilibrium in reaction networks 951

A 2B

A+C D

B+E

Figure 1. A network with five nodes [2].

Lemma 1. Assume the deficiency of a network is zero. If the network is not
weakly reversible, then the differential equation corresponding to the network with
an arbitrary kinetics cannot have a positive equilibrium.

A weakly reversible network is defined graphically with a directed arrow circle.
So it is not difficult to check non-weakly reversibility. However, checking zero
deficiency is difficult for large-size networks: In oder to calculate deficiency,
it is necessary to find a maximal linearly independent subset of the set S =
{y − y′| (y, y′) ∈ R}. Since S has many elements for large-size networks, it is
not easy to find such a subset from a large-size set.

To solve this problem, the author defined properties (P1)–(P2) on the set of
complexes to obtain the result in Lemma 1 without checking zero deficiency.
(P1)–(P2) can be applied to networks with activations and inhibitions. More
details and the proof of Lemma 2 can be found in [6].

Definition 2. Properties (P1) and (P2) on the set C of a chemical reaction
network are defined as follows: For i = 1, · · · , ν,
(P1) There exists {Ci|i = 1, · · · , ν} such that C =

ν∪
`=1

C` and Ci ⊂ C − i−1∪
`=1

C` .

(P2) Each complex yi in Ci has a species ysi such that y(ysi ) = 0 for all y in

C − ({yi} ∪ (
i−1∪
`=1

C`)). Here
i−1∪
`=1

C`(i = 1) means the empty set.

In Fig.1, let C = {A + C,B + E,D,A, 2B}, C1 = {A + C,B + E,D}, C2 =
{A, 2B}, and ν = 2. Then the network satisfies (P1)–(P2). There are a number
of networks satisfying (P1)–(P2) in recent papers [5,7]

Lemma 2. Let a network satisfy (P1) and (P2) in Definition 2. If the dif-
ferential equation corresponding to the network with a kinetics has a positive
equilibrium, then the network is weakly reversible.

3. The relation between (P1)–(P2) and deficiency

In this section, we show that the properties (P1)–(P2) imply zero deficiency by
using Lemma 3 and Lemma 4. But zero deficiency does not imply the properties
(P1)–(P2).
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Lemma 3. Let a network satisfy the properties (P1) and (P2) in Definition

2. Then there exist an integer n > 0 and a set {Ĉi|i = 1, · · · , n} satisfying

(P1)–(P2) and all complexes of each Ĉi are contained in a same linkage class.

Proof. For Ci(1 ≤ i ≤ ν) satisfying (P1)–(P2) we can partition each Ci into
subsets Cij (1 ≤ j ≤ ci), where the linkage classes containing complexes of Cij
are the same. Let Ĉ1 = C11 ,Ĉ2 = C12 ,· · · , Ĉn = Cνcν

(n =
∑ν

i=1 ci). Then the set

{Ĉi|i = 1, · · · , n} satisfies the properties (P1)–(P2) and all complexes of each Cij
belong to a same linkage class. ¤

From now on we assume that the set {Ci|i = 1, · · · , ν} satisfying (P1)–(P2)

is {Ĉi|i = 1, · · · , n} in this paper. We show in Lemma 4 that (P1)–(P2) implies
zero deficiency if the number of linkage classes of a network is one.

Lemma 4. Let a network satisfy the properties (P1) and (P2). If the number
of its linkage classes is one, then the deficiency of the network is zero.

Proof. To find the rank of the set ΓR = {y′ − y|(y, y′) ∈ R}, construct a subset
R0 of R by removing one arrow from each circle in the network. Then the ranks
of ΓR and ΓR0 are the same. Note that the number of elements of ΓR0 is n− 1,
where n is the number of complexes.

Letting
∑

(yi,yj)∈ΓR0
αij(yj − yi) = 0 for some constants αij , we obtain all

αij are zero as follows: This equation can be rewritten as

0 =
∑

(yi,yj)∈ΓR0

αij(yj − yi) =
∑

y1i∈C1

β1iy1i + · · ·+
∑

yνi∈Cν

βνiyνi. (1)

Since complexes are functions defined in PS , we can consider the right side of the

equation (1) a combination of functions in PS . Putting ysji(1 ≤ j ≤ ν, yji ∈ Cj)
in the equation (1) consecutively, we obtain βji = 0. Using the definition of
ΓR0 and βji = 0, we finally obtain αij = 0. Thus ΓR0 is linearly independent.
Therefore the rank of the network is the number of elements of ΓR0 , which is
n− 1. This means zero deficiency. ¤

Using Lemma 4, we show that (P1)–(P2) implies zero deficiency without
restriction of the number of linkage classes in the following Theorem.

Theorem 1. If a network satisfies the properties (P1)–(P2), then the network
has zero deficiency.
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Proof. Let N , `, Ni(1 ≤ i ≤ `), Ri and ΓR0
i
be the given network, the number

of linkage classes, a network corresponding to each linkage class, the relation
of Ni in Definition 1 and the linearly independent set defined in the proof of
Lemma 4, respectively. It follows from Lemma 4 that the ranks of ∪1≤i≤`ΓRi

and ∪1≤i≤`ΓR0
i
are the same as the rank of the network N . Thus the rank of

the network is ∑

1≤i≤`

(ni − 1) = (
∑

1≤i≤`

ni)− `, (2)

where ni is the number of complexes in the network Ni. Since the networks
Ni(1 ≤ i ≤ `) are disjoint,

∑
1≤i≤` ni is the number of the complexes of N .

Therefore the equation (2) implies zero deficiency. ¤

Remark 1. The converse of Theorem 1 is not true. For example, the network
A+B → B + C → C +A has zero deficiency but does not satisfy (P1)–(P2).
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