• Title/Summary/Keyword: reaction intermediates

Search Result 226, Processing Time 0.02 seconds

Comparison of Phenol Removal between Electrochemical Reaction and Plasma Reaction

  • Kim, Dong-Seog;Park, Young-Seek
    • Journal of Environmental Science International
    • /
    • v.25 no.7
    • /
    • pp.905-916
    • /
    • 2016
  • The characteristics of phenol removal and $UV_{254}$ matters variance were investigated and compared by the variation of operating factors (NaCl concentration, air flow rate, initial phenol concentration) in electrochemical reaction (ER) and dielectric barrier discharge plasma reaction (DBDPR), respectively. The phenol removal rate was shown as $1^{st}$ order both in ER and DBDPR. Also, the absorbance of $UV_{254}$ matters which means aromatic intermediates was analyzed to investigate the complete phenol degradation process. In ER, the phenol degradation and aromatic intermediates production rates increased by the increase of NaCl concentration. However, in DBDPR, the variation of NaCl concentration had no effect on the degradation of phenol and $UV_{254}$ matters. Air flow rate had a little effect on the removal of phenol and the variation of $UV_{254}$ matters in ER. The phenol removal rate in ER was a little higher than that in DBDPR. The produced $H_2O_2$ and $O_3$ amounts in ER were 2 times and 10 times higher than those in DBDPR. The chlorine intermediates ($ClO_2$ and free chlorine) were produced in ER, however, they were not produced in DBDPR.

Mechanistic Study of Half-titanocene-based Reductive Pinacol Coupling Reaction

  • Kim, Young-Jo;Do, Young-Kyu;Park, Sung-Jin
    • Bulletin of the Korean Chemical Society
    • /
    • v.32 no.11
    • /
    • pp.3973-3978
    • /
    • 2011
  • The reductive pinacol coupling reaction of aldehydes or ketones creating a new C-C bond has been a major tool to produce 1,2-diol compounds. The reaction mechanism is known to be composed of sequential three steps (activation, coupling, and dissociation). In this work, we studied the dissociation step of half-titanocene-based catalytic systems. Cp and $Cp^*$ derivatives of the pinacolato-bridged dinuclear complex were synthesized and evaluated as possible models for intermediates from the coupling step. We monitored $^1H$-NMR spectra of the reaction between the metalla-pinacol intermediates and $D_2O$. New reaction routes of the dissociation step including oxo- and pinacolato-dibridged dinuclear complexes and oxo-bridged multinuclear complexes have been suggested.

Synthesis of 4-Phenyltetralone Derivatives and Reaction Mechanism

  • Kwon, Soon-Kyoung;Park, Young-Nam
    • Archives of Pharmacal Research
    • /
    • v.23 no.4
    • /
    • pp.329-331
    • /
    • 2000
  • 4-(p-Chlorophenyl)tetralone (6) and 7-chloro-5-(p-chlorophenyl)tetralone (9) are key intermediates for the development of benzazepinone derivative haftens. These compounds could be synthesized from 4-phenyltetralone derivatives by triflic acid catalyzed Friedel-Crafts reaction. The reaction mechanism of Friedel-Crafts alkylation/acylation with lactones in triflic acid is presented. According to our tentative research, ring opening of protonated lactone (2) occurs in alkyl cleavage and the rate of the reaction is not dependent on concentration of triflic acid. So, alkylation of lactone in Friedel-Crafts reaction is presumed to be $A_{AL}$ 1. In second step, intramolecular acylation of the intermediates 4 to 6, 4 can be transformed to a triflic acid-carboxylic anhydride and then the cyclization is undergone after leaving of the triflate anion.

  • PDF

Synthesis of 2,7-Methano-aza[10]annulene Derivatives

  • 김충섭
    • Bulletin of the Korean Chemical Society
    • /
    • v.17 no.5
    • /
    • pp.437-442
    • /
    • 1996
  • Electrocyclic ring-closure of 6-vinylcyclohepta-1,3,5-isocyanate has been carried out in the presence of triphenylphosphine to examine a catalyzing effect of the triphenylphosphine. The preparation of 10-(1-carboalkoxyalkyl)-2,7-methanoaza[10]annulenes by the electrocyclic ring-closure of ketenimine intermediates, which are formed by the reaction of triphenylalkylidenephosphorane and 6-vinylcyclo-hepta-1,3,5-isocyanate, is described. 10-Alkyl-2,7-methanoaza[10]annulenes were prepared by basic hydrolysis of the carboalkoxyaza[10]annulenes and decarboxylation of the acid intermediates. In the same manner, 10-(N-alkyl(or aryl))-2,7-methanoaza[10]annulenes were prepared from the reaction of the isocyanate and N-alkyl(or aryl)iminotriphenylphosphorane via electrocylic ring-closure of carbodiimide intermediate.

A Simple Synthesis of 3-Substituted 1-Amino-2-thioxo-4-imidazolidinones, Isolation of the Intermediates, N-Amino-N-ethoxycarbonylmethyl-N'-aralkyl-thioureas

  • Soon Kyung Kwon;Myoung Suk Park
    • Bulletin of the Korean Chemical Society
    • /
    • v.13 no.5
    • /
    • pp.526-528
    • /
    • 1992
  • 1-Aminothiohydantoin derivatives were prepared in good yields by the reaction of alkyl or arylisothiocyanates with ethyl hydrazinoacetate hydrochloride in presence of triethylamine. The intermediates, N-amino-N-ethoxycarbonylmethyl-N'-aralkylthioure as, which were formed during the reaction and could be transformed into the appropriate 1-aminothiohydantoins, were isolated and characterized.

Synthesis of 2-Aroyloxyacetophenones as Intermediates for Flavone Synthesis (Flavone의 합성 중간체인 2-Aroyloxyacetophenone류의 새로운 합성법)

  • Song, Gyu-Yong;Ahn, Byung-Zun
    • YAKHAK HOEJI
    • /
    • v.38 no.1
    • /
    • pp.1-5
    • /
    • 1994
  • We have synthesized some 2-(2-benzyloxybenzoyloxy)-and 2-(2,6-dibenzyloxybenzoyloxy)-acetophenones as intermediates for flavone synthesis. The reaction of polyoxygenated 2-hydroxyacetophenones with 2-benzyloxybenzoic acid or 2,6-dibenzyloxybenzoic acid in the presence of dicyclohexylcarbodiimide and p-dimethylaminopyridine resulted in a good yield$(70{\sim}89%)$ of 2-(2-benzyloxybenzoyloxy)-acetophenones or 2-(2,6-dibenzyloxybenzoyloxy) acetophenones under milder conditions and in shorter time than the previous methods. This new methods using benzoic acids instead of benzoyl chlorides saves one reaction step of acid chlorination in comparision of the previous methods.

  • PDF

Potential Energy Surfaces for the Reaction Al + O2→ AlO + O

  • Ledentu, Vincent;Rahmouni, Ali;Jeung, Gwang-Hi;Lee, Yoon-Sup
    • Bulletin of the Korean Chemical Society
    • /
    • v.25 no.11
    • /
    • pp.1645-1647
    • /
    • 2004
  • Potential energy surfaces for the reaction Al + $O_2{\to}$AlO + O have been calculated with the multireference configuration interaction (MRCI) method using molecular orbitals derived from the complete active space selfconsistent field (CASSCF) calculations. The end-on geometry is the most favourable for the reaction to take place. The small reaction barrier in the present calculation (0.11 eV) is probably an artefact related to the ionicneutral avoided crossing. The charge analysis implies that the title oxidation reaction occurs through a harpooning mechanism. Along the potential energy surface of the reaction, there are two stable intermediates of $AlO_2(C_{{\infty}v}$ and $C_{2v}$) at least 2.74 eV below the energy of reactants. The calculated enthalpy of the reaction (-0.07 eV) is in excellent agreement with the experimental value (-0.155 eV) in part due to the fortuitous cancellation of errors in AlO and $O_2$ calculations.

LASER FLASH PHOTOLYSIS STUDY ON THE PHOTOCYCLIZATION OF N-(O-HALOBENZYL) IMIDAZOLE

  • Park, Yong-Tae;Hwang, Young-Sun;Song, Woong Song;Kim, Dongho
    • Journal of Photoscience
    • /
    • v.3 no.2
    • /
    • pp.91-93
    • /
    • 1996
  • In connection with our interest on the photochemical properties of heteroaryl halides, which are currently the subject of heterocyclic ring formation and haloarene degradation, we have studied the photochemistry of the haloarene linked to N-heteroarene compounds. Imidazo[5,1-a]isoindole was synthesized from N-(ochlorobenzyl)imidazole or N-(o-bromobenzyl) imidazole in acidic aqueous solution or acetonitrile via the intramolgcular photocyclization (Table 1). This type of reaction provides the synthetic methods for 5- and 6-membered polyheteroatomic heterocyclic ring compounds. However, the reaction mechanism for the intramolecular photocyclization of haloarene tethered heteroarenes has not yet been established. Grimshaw et al. suggested a mechanism for homolyric carbonhalogen bond fission assisted by radical complexation to explain their results in the photocyclization of 5-(2-chlorophenyl)-1,3-diphenylpyrazole. They also reported the detection of acyclohexadienyl intermediate involved in the above reaction. Park et al. reported several transient 'intermediates involved in the laser flash photolysis of N-(o-halobenzyl) pyridinium and N-benzyl-2-halopyridinium salts. Thus we performed the laser flash photolysis study on the photocyclization reaction of N-(o-chlorobenzyl) imidazole to identify the intermediate species involved in the reaction. Here, we report on the preliminary results in the photocyclization reaction of N-(o-halobenzyl)imidazole through the detection of reaction intermediates.

  • PDF

Degradation of 4-Chlorophenol by a Photo-Fenton Process with Continuous Feeding of Hydrogen Peroxide (과산화수소 연속주입식 광펜톤산화공정에 의한 4-염화페놀 분해연구)

  • Kim, Il-Kyu
    • Journal of Korean Society of Water and Wastewater
    • /
    • v.27 no.1
    • /
    • pp.31-38
    • /
    • 2013
  • The degradation of 4-chlorophenol(4-CP) by various AOPs(Advanced Oxidation Processes) with continuous feeding of $H_2O_2$, including the ultraviolet/hydrogen peroxide, the Fenton and the photo-Fenton process has been investigated. The photo-Fenton process showed the highest removal efficiency for degradation of 4-chlorophenol than those of other AOPs including the Fenton process and the combined UV process with continuous feeding of $H_2O_2$. In the photo-Fenton process, the optimal experimental condition for 4-CP degradation was obtained at pH 3. Also the 4-CP removal efficiency increased with decreasing of the initial 4-CP concentration. 4-chlorocatechol and 4-chlororesorcinol were identified as photo-Fenton reaction intermediates, and the degradation pathways of 4-CP in the aqueous phase during the photo-Fenton reaction were proposed.