• Title/Summary/Keyword: reaction force of oil film

Search Result 9, Processing Time 0.029 seconds

Dynamic Behavior Analysis of a Crankshaft-Bearing System in Variable Speed Reciprocating Compressor (가변속 왕복동형 압축기 크랭크축-베어링계의 동적 거동 해석)

  • 김태종
    • Tribology and Lubricants
    • /
    • v.17 no.6
    • /
    • pp.426-434
    • /
    • 2001
  • The hermetic reciprocating compressor driven by the BLDC motor rotating with variable speeds, is modelled and analyzed for dynamic characteristics. The governing equations of piston, connecting rod and crank-shaft of the reciprocating compression mechanism and characteristics of driving torque of the motor are obtained. Dynamic behavior of the crankshaft supported on 2 journal bearings is analyzed considering compression load and eccentric unbalance for the 4 rotating speeds of crankshaft. And. reaction forces generated from oil film in the journal bearings are analyzed under transient condition using Reynolds' equation. To take into account the dynamic characteristics depending on the variable rotating speeds, comparison on the dynamic behavior of crank-shaft is made for the 4 operating modes of the compressor. Results show that the magnitude of crankshaft locioperating on the lower rotating speeds is more larger than the higher ones due to reduction of inertia force of the reciprocating piston.

전달함수를 이용한 유정압테이블 운동정밀도 해석법의 제안 및 이론적 검증

  • 오윤진;박천홍;이후상;홍준희
    • Proceedings of the Korean Society of Machine Tool Engineers Conference
    • /
    • 2001.04a
    • /
    • pp.9-14
    • /
    • 2001
  • A new model utilizing a transfer function is introduced in the present paper for analizing motion errors of hydrostatic tables. Relationship between film reaction force in a single hydrostatic pad and form error of a guide rail is derived at various spacial frequencies by finite element analysis, and it is expressed as a transfer function. This transfer function clarifies so called averaging effect of the oil film quantitively. For example, it is found that the amplitide of the film reaction force is reduced as the spacial frequency increases or relative width of the pocket is reduced. Motion errors of a multiple pad table is estimated from transfer function, geometric relationship between each pads and form errors of a guide rail, which is named as Transfer Function Method. Calculated motion errors by TFM show good agreement with motion errors calculated by Multi Pad Method, which is considered entire table as an analysis object. From the results, it is confirmed that the proposed TFM is very effective to analyze the motion errors of hydrostatic tables.

  • PDF

Dynamic Analysis of Rotary Compressor with Rotor Misaligment (축어긋남을 갖는 로터리 컴프레서의 동적해석)

  • 정의봉;김태학
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 1997.10a
    • /
    • pp.82-87
    • /
    • 1997
  • Large dynamic loads act on the rotor in rotary compressors. There are unbalance forces due to eccentric parts and gas forces induced by the pressure difference between compression and suction gases. Rotor-journal bearing system is nonlinear since the stiffness and damping coefficients of the lubricating oil film are not constant in the bearings. The system is considered as a coupled problem of flexible rotor and the journal bearings. Bearing reaction force is calculated from pressure of oil film using Reynolds equations in journal bearings. Pressure distribution in journal bearing is analyzed by finite difference method. The dynamic response of rotor and bearing characteristic are discussed when rotary compressor has a relative misalignment.

  • PDF

Propulsion Shafting Alignment Analysis Considering the Interaction between Shaft Deflection and Oil Film Pressure of Sterntube Journal Bearing (축 처짐과 선미관 저널 베어링 유막 압력의 상호작용을 고려한 추진축계 정렬 해석)

  • Cho, Dae-Seung;Jang, Heung-Kyu;Jin, Byung-Mu;Kim, Kookhyun;Kim, Sung-Chan;Kim, Jin-Hyeong
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.53 no.6
    • /
    • pp.447-455
    • /
    • 2016
  • Precise propulsion shafting alignment of ships is very important to prevent damage of its support bearings due to excessive reaction forces caused by hull deflection, forces acted on propeller and crankshaft, and so forth. In this paper, a new iterative shafting alignment calculation procedure considering the interaction between shaft deflection and oil film pressure of Sterntube Journal Bearing (SJB) bush with single or multiple slopes is proposed. The procedure is based on a pressure analysis to evaluate distributed equivalent support stiffness of SJB by solving Reynolds equation and a deflection analysis of shafting system by a finite element method based on Timoshenko beam theory. SJB is approximated with multi-point biaxial elastic supports equally distributed to its length. Their initial stiffness values are estimated from dynamic reaction force calculated by assuming SJB as single rigid support. Then, the shaft deflection and the support stiffness of SJB are sequentially and iteratively calculated by applying a criteria on deflection variation between sequential calculation results. To demonstrate validity and applicability of the proposed procedure for optimal slope design of SJB, numerical analysis results for a shafting system are described.

Theoretical Verification on the Motion Error Analysis Method of Hydrostatic Bearing Tables Using a Transfer Function

  • Park, Chun-Hong;Oh, Yoon-Jin;Lee, Chan-Hong;Hong, Joon-Hee
    • International Journal of Precision Engineering and Manufacturing
    • /
    • v.4 no.2
    • /
    • pp.64-70
    • /
    • 2003
  • A new method using a transfer function is introduced in the present paper for analyzing the motion errors of hydrostatic bearing tables. The relationship between film reaction force in a single-side hydrostatic pad and the form error of guide rail is derived at various spatial frequencies by finite element analysis, and it is expressed as a transfer function. This transfer function clarifies so called 'the averaging effect of an oil film' quantitively. It is found that the amplitude of film force is reduced as the spatial frequency increases or the relative width of the pocket is reduced. The motion errors of a multi pad type table are estimated using a transfer function, the form errors of a guide rail and the geometric relationship between the pads. The method is named as the Transfer Function Method (TFM). The motion errors calculated by the TFM show good agreement with the motion errors calculated by the Multi Pad Method considering the entire table as an analysis object. From the results, it is confirmed that the proposed TFM is very effective to analyze the motion errors of hydrostatic tables.

Proposal and Theoretical Verification on Motion Error Analysis Method of Hydrostatic Tables Using Transfer Function (전달함수을 이용한 유정압테이블 운동정밀도 해석법의 제안 및 이론적 검증)

  • Park, Chun-Hong;Oh, Yoon-Jin;Lee, Chan-Hong;Hong, Joon-Hee
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.19 no.5
    • /
    • pp.56-63
    • /
    • 2002
  • A new model utilizing a transfer function is introduced in the present paper for analizing motion errors of hydrostatic tables. Relationship between film reaction force in a single hydrostatic pad and form error of a guide rail is derived at various spacial frequencies by finite element analysis, and it is expressed as a transfer function. This transfer function clarifies so called averaging effect of the oil film quantitively. For example, it is found that the amplitide of the film reaction farce is reduced as the spacial frequency increases or relative width of the pocket is reduced. Motion errors of a multiple pad table is estimated from transfer function, geomatric relationship between each pads and form errors of a guide rail, which is named as Transfer Function Method(TFM). Calculated motion errors by TFM show good agreement with motion errors calculated by Multi Pad Method, which is considered entire table as an analysis object. From the results, it is confirmed that the proposed TFM is very effective to analyze the motion errors of hydrostatic tables.

Numerical Study on the Dynamic Behaviour of a Crank Shaft Used in Scroll Compressor (스크롤 압축기의 크랭크축의 동적거동에 관한 수치적 연구)

  • 김태종;안영재;한동철
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.17 no.8
    • /
    • pp.1940-1950
    • /
    • 1993
  • The theoretical investigation is done on the dynamic behavior of a crank shaft used in a scroll compressor. The compression performance of a scroll compressor is directly influenced by the sealing characteristics between fixed and orbiting scrolls, which is related with the dynamic behavior of a scroll compressor. Analyzing the constrained power transmitting system is came to be of importance, accordingly. The equations of motion and interacting forces of a scroll compressor are derived and solved numerically in this paper. The locus of the crank shaft is also obtained by employing the reaction force caused by the oil film of journal bearing. The results show that the crank shaft of a scroll compressor has considerably stable rotating locus.

Study on the Dynamic Behaviors of Engine Bearing with the Inertia Effect of Crank Pin Journal (크랭크 핀의 질량관성을 고려한 엔진 베어링의 틈새 거동 연구)

  • Jang Siyoul
    • Tribology and Lubricants
    • /
    • v.21 no.1
    • /
    • pp.39-45
    • /
    • 2005
  • Investigation of the mass effect on the journal traces in the clearance of engine bearing has been performed for better design of mass distribution of crank system components such as crank pin, piston, con-rod, balance weight, crank throw weight, etc. as well as for better oil reaction behaviors to the applied forces from the cylinder pressures on the bearing. In this preliminary study, crank pin traces in the engine bearing clearance are computed by varying the equivalent magnitude of crank pin mass that includes the masses of crank pin, piston, con-rod. etc.. while most previous studies regarding journal traces in the bearing clearance neglect the inertia effects of crank pin mass. Although the inertia effect of pill mass is negligibly small compared to viscous force by ${\pi}bearing$ theory, it is found that it gives a great amount of influences on the journal traces in full bearing computation $(2\pi\;bearing\;theory)$ under the dynamic loading conditions.

Stability analysis of the rotating and stationary grooved journal bearings (정지홈과 회전홈을 갖는 저널베어링의 안정성 평가)

  • Lee, M.H.;Lee, J.H.;Jang, G.H.
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2013.04a
    • /
    • pp.141-146
    • /
    • 2013
  • This research investigates the stability analysis for the rotating and the stationary grooved journal bearing. The dynamic coefficients of the journal bearing are calculated by using FEM and the perturbation method. When journal bearing is in whirling motion, the dynamic coefficients have time-varying components as a sine wave due to the reaction force of oil film toward the center of journal even in the steady state. The solutions for the equations of motion can be assumed as the Fourier series expansion. The equations of motion can be rewritten as the linear algebraic equations with respect to the Fourier coefficients. Then, stability of the grooved journal bearing can be calculated by Hill's infinite determinant. The periodic function of dynamic coefficients is derived using Fourier Fast Transform(FFT).The stability of journal bearing is determined as rotating speed increases and the stability of rotating grooved journal bearing is compared and discussed with the stability of stationary grooved journal bearing.

  • PDF