• Title/Summary/Keyword: reaction calorimeter

Search Result 94, Processing Time 0.032 seconds

A Study on Replay Experiments and Thermal Analysis for Autoignition Phenomenon of Shredded Waste Tires (폐타이어 분쇄물의 자연발화현상에 대한 재연실험 및 열분석에 관한 연구)

  • Koh, Jae Sun;Jang, Man Joon
    • Fire Science and Engineering
    • /
    • v.26 no.6
    • /
    • pp.99-108
    • /
    • 2012
  • These days, spontaneous ignition phenomena by oxidizing heat frequently occur in the circumstances of processing and storing waste tires. Therefore, to examine the phenomena, in this work, this researcher conducted the tests of fires of fragmented waste tires (shredded tire), closely investigated components of the fire residual materials collected in the processing and storing place, and analyzed the temperature of the starting of the ignition, weight loss, and heat of reaction. For the study, this researcher conducted fire tests with fragmented waste tires in the range of 2.5 mm to 15 mm, whose heat could be easily accumulated, and performed heat analysis through DSC and TGA, DTA, DTG, and GC/MS to give scientific probability to the possibility of spontaneous ignition. According to the tests, at the 48-hour storage, rapid increase in temperature ($178^{\circ}C$), Graphite phenomenon, smoking were observed. And the result from the DTA and DTG analysis showed that at $166.15^{\circ}C$, the minimum weight loss occurred. And, the result from the test on the waste tire analysis material 1 (Unburnt) through DSC and TGA analysis revealed that at $180^{\circ}C$ or so, thermal decomposition started. As a result, the starting temperature of ignition was considered to be $160^{\circ}C$ to $180^{\circ}C$. And, at $305^{\circ}C$, 10 % of the initial weight of the material reduced, and at $416.12^{\circ}C$, 50 % of the intial weight of the material decreased. The result from the test on oxidation and self-reaction through GC/MS and DSC analysis presented that oxidized components like 1,3 cyclopentnadiene were detected a lot. But according to the result from the heat analysis test on standard materials and fragmented waste tires, their heat value was lower than the basis value so that self-reaction was not found. Therefore, to prevent spontaneous ignition by oxidizing heat of waste tires, it is necessary to convert the conventional process into Cryogenic Process that has no or few heat accumulation at the time of fragmentation. And the current storing method in which broken and fragmented materials are stored into large burlap bags (500 kg) should be changed to the method in which they are stored into small burlap bags in order to prevent heat accumulation.

Cure Behavior and Tensile Properties of Ethylidene Norbornene/endo-Dicyclopentadiene Blends (Ethylidene Norbornene/endo-Dicyclopentadiene 블렌드의 경화 거동 및 인장 특성)

  • Jung, Jong Ki;Choi, Jung Hwa;Yang, Guang;Park, Jongmoon;Kim, Donghak;Kim, Seonggil;Lee, Jong Keun;Oh, Myung-Hoon;Kim, Bongsuk;Bang, Daesuk
    • Polymer(Korea)
    • /
    • v.39 no.3
    • /
    • pp.506-513
    • /
    • 2015
  • Ethylidene norbornene (ENB) and its blends with endo-dicyclopentadiene (endo-DCPD) were prepared and reacted via the ring-opening metathesis polymerization (ROMP) reaction with the $1^{st}$ and $2^{nd}$ generation Grubbs' catalysts. Dynamic exothermic behaviors during ROMP and tensile properties after ROMP were evaluated using a differential scanning calorimeter (DSC) and a universal testing machine (UTM) for the samples, respectively. It revealed that the ROMP rate was accelerated with the less contents of endo-DCPD and under the $2^{nd}$ generation catalyst. Also, the addition of endo-DCPD and the $1^{st}$ generation catalyst resulted in higher tensile modulus and strength but lower toughness. Gel fraction measurement and fracture surface observation were made to understand the tensile properties.

Studies on Cure Kinetics and Thermal Stability of Epoxy/Nylon 6 Blend (에폭시/나일론6 블랜드의 경화 동력학 및 열안정성에 관한 연구)

  • Kim, Dong-Kyu;Kim, Kwan-Woo;Han, Woong;Kwac, Lee-Ku;Kim, Byung-Joo
    • Applied Chemistry for Engineering
    • /
    • v.26 no.5
    • /
    • pp.538-542
    • /
    • 2015
  • In this work, effects of the blend composition composed of 0, 10, 20, 30 and 40 wt% of nylon 6 to epoxy (diglycidylether of bisphenol-A, DGEBA) resin were investigated in terms of cure kinetics and thermal stability by differential scanning calorimeter (DSC) and thermogravimetric analysis (TGA). As the content of the nylon 6 increased, the maximum exothermic temperature ($T_{max}$) and the value of cure activation energy ($E_a$) decreased. The maximum exothermic temperature of the blending samples decreased with increasing in nylon 6 content, resulting in the decrease in curing activation energy of them due to the rapid curing reaction with epoxy resin in this system. From TGA analysis results of the DGEBA/nylon 6, the thermal stability based on the thermal stability index ($A^*{\cdot}K^*$) and integral procedure decomposition temperature (IPDT) increased with increase in the nylon 6 content. This was because of the combination of DGEBA and nylon 6 having good heat resistance, resulting in improving thermal stability of the DGEBA/nylon 6.

Ni0.5Zn0.4Cu0.1Fe2O4 Complex Ferrite Nanoparticles Synthesized by Chemical Coprecipitation Predicted by Thermodynamic Modeling

  • Kang, Bo-Sun;Park, Joo-Seok;Ahn, Jong-Pil;Kim, Kwang-Hyun;Tae, Ki-Sik;Lee, Hyun-Ju;Kim, Do-Kyung
    • Journal of the Korean Ceramic Society
    • /
    • v.50 no.3
    • /
    • pp.231-237
    • /
    • 2013
  • Thermodynamic modeling of the $Ni_{0.5}Zn_{0.4}Cu_{0.1}Fe_2O_4$ complex ferrite system has been adopted as a rational approach to establish routes to better synthesis conditions for pure phase $Ni_{0.5}Zn_{0.4}Cu_{0.1}Fe_2O_4$ complex ferrite. Quantitative analysis of the different reaction equilibria involved in the precipitation of $Ni_{0.5}Zn_{0.4}Cu_{0.1}Fe_2O_4$ from aqueous solutions has been used to determine the optimum synthesis conditions. The spinel ferrites, such as magnetite and substitutes for magnetite, with the general formula $MFe_2O_4$, where M= $Fe^{2+}$, $Co^{2+}$, and $Ni^{2+}$ are prepared by coprecipitation of $Fe^{3+}$ and $M^{2+}$ ions with a stoichiometry of $M^{2+}/Fe^{3+}$= 0.5. The average particle size of the as synthesized $Ni_{0.5}Zn_{0.4}Cu_{0.1}Fe_2O_4$, measured by transmission electron microscopy (TEM), is 14.2 nm, with a standard deviation of 3.5 nm the size when calculated using X-ray diffraction (XRD) is 16 nm. When $Ni_{0.5}Zn_{0.4}Cu_{0.1}Fe_2O_4$ ferrite is annealed at elevated temperature, larger grains are formed by the necking and mass transport between the $Ni_{0.5}Zn_{0.4}Cu_{0.1}Fe_2O_4$ ferrite nanoparticles. Thus, the grain sizes of the $Ni_{0.5}Zn_{0.4}Cu_{0.1}Fe_2O_4$ gradually increase as heat treatment temperature increases. Based on the results of Thermogravimetric Analysis (TGA) and Differential Scanning Calorimeter (DSC) analysis, it is found that the hydroxyl groups on the surface of the as synthesized ferrite nanoparticles finally decompose to $Ni_{0.5}Zn_{0.4}Cu_{0.1}Fe_2O_4$ crystal with heat treatment. The results of XRD and TEM confirmed the nanoscale dimensions and spinel structure of the samples.

Explosion Properties and Thermal Stability of Reactive Organic Dust (반응성 유기물 분진의 폭발특성과 열안정성)

  • Han, Ou-Sup;Han, In-Soo;Choi, Yi-Rac;Lee, Keun-Won
    • Journal of the Korean Institute of Gas
    • /
    • v.15 no.4
    • /
    • pp.7-14
    • /
    • 2011
  • Using 20 L spherical explosion vessel and differential scanning calorimeter (DSC), an experimental investigation was carried on explosion characteristics and thermal decomposition of some reactive organic dust. As the result, the minimum explosion concentration of Benzoyl peroxide (BPO), Phthalic anhydride (PA) and 1-Hydroxybenzotriazol (HBT) exist between 10 and 15 g/$m^3$, which indicates that their explosion sensitivity are high. The maximum Kst values of HBT, PA and 97 % BPO are 251, 146 and 80 [$bar{\cdot}m/s$], respectively and the explosion severity of HBT is the explosion class of St-2. The flame velocity was also calculated from the combustion time of dust and flame arrival time to estimate the flame propagation characteristics in a closed vessel. The decomposition temperature and heat of decomposition reaction for 97 % BPO and HBT are $107^{\circ}C$ (1025 J/g), $214^{\circ}C$ (1666 J/g), respectively and it was found that these low decomposition temperature and high released heat affect the explosion characteristics.

Preparation and Characterization of Biomass-based Polymer Blend Films(2) (Biomass-based 고분자 블렌드 필름의 제조 및 특성 연구(2))

  • Lee, Soo;Park, Myung-Ho
    • Journal of the Korean Applied Science and Technology
    • /
    • v.30 no.2
    • /
    • pp.305-311
    • /
    • 2013
  • PLA(polylactic acid), one of biodegradable polymers was blended with various amounts of wood pulp powder through solution blending technic to verify the effect of reinforcing pulp amount on the mechanical properties of blend films. Also these blend films were further modified with TDI(toluene diisocyanate) as crosslinking agent to introduce urethane functions by reaction of pulp hydroxyl groups and isocyanate. As a result, the tensile strength of blend film with 0.25 wt% pulp was increased from $565.25kg_f/cm^2$ for PLA film itself to $624.20kg_f/cm^2$. However, elongation of this film was decreased by 50% of that of PLA film itself. Only PLA/pulp blend film further modified with 500% of TDI/0.25 wt% pulp showed the slightly increased tensile strength but decreased elongation. Melting point and glass transition temperature of PLA/pulp blend films were confirmed by using Differential Scanning Calorimeter(DSC). Thermal stability of these blend films measured by TGA showed only a slight increase at temperature lower than $300^{\circ}C$.

THE POLYMERIZATION RATE AND THE DEGREE OF CONVERSION OF COMPOSITE RESINS BY DIFFERENT LIGHT SOURCES (광원의 종류에 따른 복합레진의 중합거동 및 중합률에 관한 연구)

  • Ryoo, Joo-Hee;Lee, In-Bog;Yoo, Hyun-Mee;Kim, Mi-Ja;Seok, Chang-In;Kwon, Hyuk-Choon
    • Restorative Dentistry and Endodontics
    • /
    • v.29 no.4
    • /
    • pp.386-398
    • /
    • 2004
  • Objectives: The purpose of this study was to observe the reaction kinetics and the degree of polymerization of composite resins when cured by different light sources and to evaluate the effectiveness of the blue Light Emitting Diode Light Curing Units (LED LCUs) compared with conventional halogen LCUs. Materials and Methods: First, thermal analysis was performed by a differential scanning calorimeter (DSC). The LED LCU (Elipar Freelight, $320{\;}mW/\textrm{cm}^2$) and the conventional halogen LCU (XL3000, $400{\;}mV/\textrm{cm}^2$) were used in this study for curing three composite resins (SureFil, Z-250 and AEliteFLO). Second. the degree of conversion was obtained in the composite resins cured according to the above curing mode with a FTIR. Third, the measurements of depth of cure were carried out in accordance with ISO 4049 standards. Statistical analysis was performed by two-way ANOVA test at 95% levels of confidence and Duncan's procedure for multiple comparisons. Results: The heat of cure was not statistically different among the LCUs (p > 0.05). The composites cured by the LED (Exp) LCUs were statistically more slowly polymerized than by the halogen LCU and the LED (Std) LCU (p < 0.05). The composite resin groups cured by the LED (Exp) LCUs had significantly greater degree of conversion value than by the halogen LCU and the LED (Std) LCU (p =0.0002). The composite resin groups cured by the LED (Std) LCUs showed significantly greater depth of cure value than by the halogen LCU and the LED (Exp) LCU (p < 0.05).

Analysis of the Heat of Absorption Based on the Chemical Structures of Carbon Dioxide Absorbents (이산화탄소 흡수제의 화학구조별 반응열량 특성 연구)

  • Kwak, No Sang;Lee, Ji Hyun;Eom, Yong Seok;Kim, Jun Han;Lee, In Young;Jang, Kyung Ryoung;Shim, Jae-Goo
    • Korean Chemical Engineering Research
    • /
    • v.50 no.1
    • /
    • pp.135-140
    • /
    • 2012
  • In this study, the heats of absorption of $CO_2$ with aqueous solutions of primary, secondary and tertiary amine aqueous solutions were measured in the commercial reaction calorimeter SIMULAR (HEL, UK). The heats of absorption of 30 wt% amine aqueous solutions of MEA (monoethanolamine, primary amine), EAE(2-(ethylamino)ethanol, secondary amine), and MDEA (methyldiethanolamine, tertiary amine) were measured as function of the $CO_2$ loading ratio at $40^{\circ}C$, in each case. In addition, the heats of absorption of sterically-hindered amine aqueous solutions of AMP(2-amino-2-methyl-1-propanol, primary amine), DEA(diethanolamine, secondary amine) and TEA(triethanolamine, tertiary amine) were measured to observe the steric hindrance effect. The heat of absorption is high in the following order regardless of the steric hindrance: primary amine > secondary amine > tertiary amine. The heats of absorption of amines having sterically-hindered substituents surrounding nitrogen atoms are relatively low compare to that of sterically-free amines, although the difference is very small.

A Study on the Preparation of Halogen Free M-P Flame Retardant and Its Application to Composite Material (비할로겐 M-P 난연제 제조 및 복합재료 응용 연구)

  • Lee, Soon-Hong
    • Journal of the Korean Society of Safety
    • /
    • v.24 no.6
    • /
    • pp.63-71
    • /
    • 2009
  • In order to improve flame retardancy, the halogen free organic melamine phosphate(M-P) flame retardant was synthesized from melamine and phosphoric acid by the reaction of precipitation. The ignition test was carried out preparing hybrid flame retardant compound($H_bFRC$) consisting of organic M-P and inorganic Mg$(OH)_2$ as a flame retardant in the polyolefin resins. The flame retardancy and mechanical properties of flame retardant aluminum composite panel($H_bFRC$-ACP) were performed to investigate the possibility of the composite material, which was contained M-P, as a inner core for $H_bFRC$-ACP. For this study, the results of ignition test indicate that a char formation and drip suppressing effect, and combustion time reduced as the content of M-P increased. The limited oxygen index(LOI) values were measured 17.4vol% and 31.5vol% for LDPE only and $H_bFRC$-3(M-P content: 15wt%), respectively. And it was verified that the $H_bFRC$-3 was needed more oxygen quantity with the increase of M-P content when it combustion. Also, the results from thermogravimetric analysis were observed endothermic peak at $350^{\circ}C$ and $550^{\circ}C$, it was confirmed predominant thermal stability though the wide temperature range by the mixture of M-P and Mg$(OH)_2$. The LDPE-ACP (using only LDPE as a inner core), $35.13kW/m^2$ of heat release rate(HRR) and 13.43MJ/m2 of total heat release(THR) were measured while the $H_bFRC$-ACP, $10.44kW/m^2$ of HRR and 1.84MJ/m2 of THR were measured by results of cone calorimeter test. In case of $H_bFRC$-ACP, the average gas emission amount of CO and $CO_2$ could be decreased down to 25% and 20%, respectively, in comparison with LDPE-ACP. The mechanical properties such as tensile strength, bending strength and adhesion strength of $H_bFRC$-ACP were revealed slightly high values $54N/mm^2$, $152N/mm^2$ and 120N/25mm, respectively, compared with LDPE-ACP. It was confirmed that flame retardancy was improved with the synergy effect because of char formation by M-P and hydrolysis by Mg$(OH)_2$. The result of this study suggest that $H_bFRC$ can be applied for an adequate halogen free flame retardant composite material as a inner core for ACP.

On the Properties of TLCP/PBT Blends Prepared by In Situ Polymerization in PBT Solution (In situ 중합에 의해서 제조된 TLCP/PBT 블렌드의 특성 연구)

  • Choi, Jae-Kon;Park, Il-Soo;Kim, Sun;Choi, Yoo-Sung;Lee, Eung-Jae;Jo, Byung-Wook
    • Elastomers and Composites
    • /
    • v.39 no.3
    • /
    • pp.217-227
    • /
    • 2004
  • A new thermotropic liquid crystalline polymer(TLCP) containing a triad aromatic ester type mesogenic unit and butylene terephthalate unit(BT) in the main chain was synthesized by polycondensation reaction. The TLCP synthesized showed nematic mesophasic behavior and its transition temperature from solid to mesophase was $260^{\circ}C$. The TLCP/PBT blends were prepared by in-situ polymerization in PBT solution and characterized by differential scanning calorimeter(DSC), thermogavimetric analyzer(TGA), scanning electron microscope(SEM), x-ray diffractometer(XRD), and dynamic mechanical thermal analyze, (DMTA). The blends showed well dispersed TLCP phases with domain sizes $0.05{\sim}0.2{\mu}m$ in the PBT matrix. As the increasing TLCP content from 5 to 20 wt%, ${\Delta}Hm$ values of pure PBT in the blend were increased because TLCP acts as a nucleating agent in the PBT matrix. The mechanical properties of the blends depended on the TLCP contents because the TLCP acted effectively as a reinforcing material in the PBT matrix. The blends showed good interfacial adhesion between the TLCP phase and PBT matrix.The blends prepared by in-situ polymerization showed higher mechanical properties and well dispersed TLCP domains than those of the blends prepared by melt blending.