• Title/Summary/Keyword: re-scaling

Search Result 47, Processing Time 0.031 seconds

A Development of the Trapped Water Drainage System to Prevent the Deterioration of Deck Slab and Pavement (교면포장 및 바닥판 손상방지를 위한 내부침투수 처리시스템 개발)

  • Lee, Sang-Dal;Lee, Sang-Soon;Shin, Jae-In;Seo, Sang-Gul
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.6 no.1
    • /
    • pp.233-239
    • /
    • 2002
  • Reinforced concrete deck slabs are directly affected by traffic loads and they are also susceptible to weather-related problems, such as cracking, reinforcement corrosion, spatting, scaling, delamination, leakage, efflorescence and so on. Some of these defects are caused by water which seeps through pavements and trapped between pavements and deck slabs. For durability of reinforced concrete deck slabs and pavements, it is very important to protect deck slabs and drain the trapped water out. To develop the trapped water drainage system, the following studies have been performed in Korea Highway Cooperation: related researches a re reviewed; for six bridges, deck slabs are thoroughly investigated; new system to effectively drain the trapped water out is proposed; the proposed system is installed and evaluated. The proposed system is proved to be effective to drain the trapped water out and is expected to increase the durability of reinforced concrete deck slabs.

Elliptic Feature of Coherent Fine Scale Eddies in Turbulent Channel Flows

  • Kang Shin-Jeong;Tanahashi Mamoru;Miyauchi Toshio
    • Journal of Mechanical Science and Technology
    • /
    • v.20 no.2
    • /
    • pp.262-270
    • /
    • 2006
  • Direct numerical simulations (DNS) of turbulent channel flows up to $Re_{\tau}=1270$ are performed to investigate an elliptic feature and strain rate field on cross sections of coherent fine scale eddies (CFSEs) in wall turbulence. From DNS results, the CFSEs are educed and the strain rate field around the eddy is analyzed statistically. The principal strain rates (i.e. eigenvalues of the strain rate tensor) at the CFSE centers are scaled by the Kolmogorov length $\eta$ and velocity $U_k$. The most expected maximum (stretching) and minimum (compressing) eigenvalues at the CFSE centers are independent of the Reynolds number in each $y^+$ region (i. e. near-wall, logarithmic and wake regions). The elliptic feature of the CFSE is observed in the distribution of phase-averaged azimuthal velocity on a plane perpendicular to the rotating axis of the CFSE $(\omega_c)$. Except near the wall, phase-averaged maximum $(\gamma^{\ast}/\gamma_c^{\ast})$ and minimum $(\alpha^{\ast}/\alpha_c^{\ast})$ an eigenvalues show maxima on the major axis around the CFSE and minima on the minor axis near the CFSE center. This results in high energy dissipation rate around the CFSE.

Hierarchical structure parameters in three dimensional turbulence: She-Leveque model

  • Ahmad, Imtiaz;Hadj-Taieb, Lamjed;Hussain, Muzamal;Khadimallah, Mohamed A.;Taj, Muhammad;Alshoaibi, Adil
    • Smart Structures and Systems
    • /
    • v.29 no.5
    • /
    • pp.747-755
    • /
    • 2022
  • Hierarchical structure parameters, proposed in She-Leveque model, are investigated for velocity components obtained from different flow types over a large range of Reynolds numbers 255 < Re𝜆 < 720. The values of intermittency parameter 𝛽, with respect to a fixed velocity component, are observed nearly same for all four types of turbulence. The parameter 𝛾, for streamwise velocity components is nearly the same but significantly different for vertical components in different flows. It is also observed that for both parameters, an obvious relation between the longitudinal and transverse components 𝛽T < 𝛽L (and 𝛾T < 𝛾L) always holds. However, the difference between 𝛽L and 𝛽T is found very small in all types of turbulent flows, we studied here. It is evidenced that at low Reynolds numbers, the deviations from K41 scaling are mainly due to the most intense structures and slightly because of more heterogeneous hierarchy of fluctuation structures. However, at higher Reynolds numbers the deviations seem as a consequence of the most intense structures only. Over all, the study suggests that the hierarchy parameter 𝛽 may be consider as a universal constant.

Shrinkage Cracking Resistance of a Very High Performance Concrete for 2LCP in Accordance with the Polymer Powder Mixing Rate (폴리머 분말 혼입율에 따른 2층 포장용 고성능 콘크리트의 자기수축 특성)

  • Yun, ByeongRim;Yun, Kyongku;Lee, KyeRe;Han, SeungYeon
    • International Journal of Highway Engineering
    • /
    • v.20 no.2
    • /
    • pp.19-25
    • /
    • 2018
  • PURPOSES : This purpose of this study is to analyze the effect to autogenous shrinkage of the top-layer material of a two-lift concrete pavement mixing both silica fume and polymer powder. METHODS : The bottom-layer of a two-lift concrete pavement was paved with original portland cement (OPC) with a 20~23 cm thickness. Additionally, the top-layer which is directly exposed to the environment and vehicles was paved with a high-performance concrete (HPC) with a 7~10 cm thickness. These types of pavements can achieve a long service life by reducing joint damage and increasing the abrasion and scaling resistance. In order to integrate the different bottom and top layer materials, autogenous shrinkage tests were performed in this study according to the mixing ratio of silica fume and polymer powder, which are the admixture of the top-layer material. RESULTS : Autogenous shrinkage decreased when polymer powder was used in the mix. Contrary to this, autogenous shrinkage tended to rise with increasing silica fume content. However, the effects were not significant when small amounts of polymer powder were used (3% and 11%). CONCLUSIONS : The durability and compressive strength increase when silica fume is used in the mix. The flexural strength considerably increases and autogenous shrinkage of concrete decreases when polymer powder is used in the mix. As seen from above, the proper use of these materials improves not only durability, but also autogenous shrinkage, leading to better shrinkage crack control in the concrete.

The Impact of Environmental Health Factors on Extreme-heat Vulnerability Assessment in a Metropolitan City (환경보건적 요소가 도시 내 폭염 취약성 평가 결과에 미치는 영향 분석)

  • Lee, Won-Jung;Kang, Jae-Eun;Kim, Yoo-Keun
    • Journal of Environmental Health Sciences
    • /
    • v.39 no.6
    • /
    • pp.492-504
    • /
    • 2013
  • Objectives: This analysis seeks to evaluate the impact of environmental health factors (EHF; e.g. hospital beds per capita, employees of medical institutions) on extreme-heat vulnerability assessment in Busan Metropolitan City during 2006-2010. Methods: According to the vulnerability concept suggested by the Intergovernmental Panel on Climate Change (IPCC), extreme-heat vulnerability is comprised of the categories of Exposure, Sensitivity, and Adaptive Capacity (including EHF). The indexes of the Exposure and Sensitivity categories indicate positive effects, while the Adaptive capacity index indicates a negative effect on extreme-heat vulnerability. Variables of each category were standardized by the re-scaling method, and then each regional relative vulnerability was computed with the vulnerability index calculation formula. Results: The extreme-heat vulnerability index (EVI) excepting EHF was much higher in urban areas than in suburban areas within the metropolitan area. When EHF was considered, the difference in the EVI between the two areas was reduced due to the increase of the Adaptive capacity index in urban areas. The low EVI in suburban areas was induced by a dominant effect of natural environmental factors (e.g. green area) within the Adaptive capacity category. Conclusions: To reduce the vulnerability to extreme heat in urban areas, which were more frequently exposed to extreme heat than others areas, public health and natural environments need to be improved in sensitive areas.

Development of Seawater Intrusion Vulnerability Index Using AHP (계층화 분석기법을 이용한 해수침투 취약성지수 개발)

  • Yang, Jeong-Seok;Kim, Il-Hwan
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.35 no.3
    • /
    • pp.557-565
    • /
    • 2015
  • Sea level rise due to global warming causes seawater intrusion into aquifers in coastal areas. Seawater intrusion vulnerability index was developed using PSR (Pressure, State, Response) model and analysis hierarchy process (AHP). Coastal regions in Korea, Gangwon-do Sokcho-si, Incheon-si Ganghwa-gun, Chungcheongnam-do Taean-gun, Jeollanam-do Yeosu-si, Jindo-gun were chosen and 14 indicators were selected by considering the humanities, economic, social, environmental aspects. Re-scaling method was used for the standardization of indices and questionnaire survey was performed to calculate weight values for each index. The results showed that Yeosu-si was selected as the most vulnerable region to seawater intrusion. The seawater intrusion index developed in this research can be used to analyze the vulnerable regions to seawater intrusion and to establish a policy to minimize the seawater intrusion problems in coastal regions.

Vulnerability Assessment of Water Quality and Aquatic Ecosystem to Climate Change in Korea using Proxy Variables (대리변수를 이용한 한반도 수질 및 수생태계 부문의 기후변화 취약성 평가)

  • Lee, Keon Haeng;Chung, Eu Gene;Kim, Kyunghyun;Yu, Jeong Ah;Lee, Eun Jeong
    • Journal of Korean Society on Water Environment
    • /
    • v.28 no.3
    • /
    • pp.444-452
    • /
    • 2012
  • This study aims at assessing vulnerability of water quality and aquatic ecosystem to climate change by using proxy variables. Vulnerability to climate change is defined as a function of exposure to climate, sensitivity, and adaptive capacity. Detailed proxy variables were selected considering availability and then standardized by re-scaling concept. After adequate weights were assigned to standardized proxy variables by Delphi technique, vulnerability index was calculated. As results, vulnerability of adjacent regions to coastal areas include water quality and aquatic ecosystem is relatively higher than that of inland areas, and especially adjacent region to the western and southeast seas, and Jeju show high vulnerabilities. Vulnerability in the future was performed based on A1B scenario (IPCC, 2000). Temporally, the increase of vulnerability from 2050s to 2100s may be larger than the increase from 2000s to 2050s. Because vulnerability index was estimated through the relationship among various proxy variables, it is important to consider characteristics of local region with measurements and policies for reduction of sensitivity and enhancement of adaptive capacity on climate change. This study is expected to be useful in planning adaptation measures and selecting priority to the policy on climate change.

Effective professional intraoral tooth brushing instruction using the modified plaque score: a randomized clinical trial

  • Park, Se-Ho;Cho, Sung-Hee;Han, Ji-Young
    • Journal of Periodontal and Implant Science
    • /
    • v.48 no.1
    • /
    • pp.22-33
    • /
    • 2018
  • Purpose: The purpose of this study was to evaluate the efficacy of the modified plaque score (MPS) for assessing the oral hygiene status of periodontitis patients. Methods: A total of 116 patients were included in this study. After evaluation of the $L{\ddot{o}}e$ and Silness gingival index (GI), Silness and $L{\ddot{o}}e$ plaque index (PlI), O'Leary plaque control record (PCR), and MPS, patients were randomly assigned to either a conventional tooth brushing instruction (C-TBI) group (n=56) or a professional intraoral tooth brushing instruction (P-TBI) group (n=60). The MPS and clinical parameters were re-evaluated after scaling and a series of root planing. The convergent validity of MPS with the PlI and PCR was assessed. The measurement time for MPS and PCR was compared according to the proficiency of the examiner. Results: After root planing, the GI, PlI, PCR, and MPS improved from their respective baseline values in both groups. Three different plaque indices including the MPS, showed significant differences between the C-TBI group and the P-TBI group after root planing. The MPS showed significant concurrence with the PCR and PlI. The mean time for PCR measurement was $2.76{\pm}0.71$ times longer than that for MPS measurement after 2 weeks of training. Conclusions: MPS seems to be a practical plaque scoring system compared with the PlI and PCR. These findings suggest that repetitive plaque control combined with an easily applicable plaque index (MPS) may facilitate more effective oral hygiene education and improved periodontal health.

Flow-induced pressure fluctuations of a moderate Reynolds number jet interacting with a tangential flat plate

  • Marco, Alessandro Di;Mancinelli, Matteo;Camussi, Roberto
    • Advances in aircraft and spacecraft science
    • /
    • v.3 no.3
    • /
    • pp.243-257
    • /
    • 2016
  • The increase of air traffic volume has brought an increasing amount of issues related to carbon and NOx emissions and noise pollution. Aircraft manufacturers are concentrating their efforts to develop technologies to increase aircraft efficiency and consequently to reduce pollutant discharge and noise emission. Ultra High By-Pass Ratio engine concepts provide reduction of fuel consumption and noise emission thanks to a decrease of the jet velocity exhausting from the engine nozzles. In order to keep same thrust, mass flow and therefore section of fan/nacelle diameter should be increased to compensate velocity reduction. Such feature will lead to close-coupled architectures for engine installation under the wing. A strong jet-wing interaction resulting in a change of turbulent mixing in the aeroacoustic field as well as noise enhancement due to reflection phenomena are therefore expected. On the other hand, pressure fluctuations on the wing as well as on the fuselage represent the forcing loads, which stress panels causing vibrations. Some of these vibrations are re-emitted in the aeroacoustic field as vibration noise, some of them are transmitted in the cockpit as interior noise. In the present work, the interaction between a jet and wing or fuselage is reproduced by a flat surface tangential to an incompressible jet at different radial distances from the nozzle axis. The change in the aerodynamic field due to the presence of the rigid plate was studied by hot wire anemometric measurements, which provided a characterization of mean and fluctuating velocity fields in the jet plume. Pressure fluctuations acting on the flat plate were studied by cavity-mounted microphones which provided point-wise measurements in stream-wise and spanwise directions. Statistical description of velocity and wall pressure fields are determined in terms of Fourier-domain quantities. Scaling laws for pressure auto-spectra and coherence functions are also presented.

Assessing and Mapping Regional Vulnerability to Agricultural Drought (농업가뭄 취약성 평가 및 가뭄취약지도 작성)

  • Mun, Young-Sik;Nam, Won-Ho;Jeon, Min-Gi;Lee, Seung-Yong;Lee, Kwangya
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2020.06a
    • /
    • pp.155-155
    • /
    • 2020
  • 최근 전 세계적으로 기후변화 및 이상기후로 인해 홍수, 가뭄과 같은 수자원과 관련된 재해들의 빈도가 증가하고 있는 추세이다. 가뭄은 발생 시작 및 종료 시기가 명확하지 않고, 그 피해가 광범위한 특징으로 인해 농업분야에 직접적인 피해를 주고 있으며, 농산물 생산성 및 안정적인 농업용수 확보에 큰 영향을 미치고 있다. 과거 가뭄을 해석하기 위해서는 일반적으로 강수량, 가뭄지수 등 단일지표를 활용하여 가뭄을 평가하였으나, 최근 선제적인 가뭄대응을 위해 다양한 인자들을 종합하여 판단하는 취약성 평가 (Vulnerability Assessment) 개념을 도입하였다. 농업가뭄 취약성은 IPCC (Intergovernmental Panel on Climate Change)에서 기상 및 수문학적 가뭄에 의한 작물 생산 피해 및 가축의 피해를 동반할 수 있는 가능성으로 정의한다. 본 연구에서는 농업용 저수지 중심의 농업용수 기반 취약성 평가 항목을 선정하여 농업가뭄 취약지도를 작성하였다. 민감도, 노출도 및 적응능력 개념에 적합한 대응변수를 활용하여 저수지의 저수율, 용수 부족 및 가뭄 대응능력 뿐만 아니라 사회·환경적, 기상학적 영향을 고려한 평가 항목 선정하였다. 항목별 단위 및 특성을 통합하기 위해 스케일 재조정 (Re-Scaling), Z-Score 등 다양한 방법을 활용하여 표준화를 실시하였으며, AHP (Analytic Hierarchy Process), 엔트로피 분석 등을 통해 항목별 가중치를 산정하였다. 또한 농업가뭄에 긍정적인 영향과 부정적인 영향을 미치는 항목을 구분하여 대응변수를 적용하였다. 이를 바탕으로 농업가뭄 취약성을 평가하여 항목별 등급을 구분하였으며, 전국 167개 시군을 대상으로 농업가뭄 취약지도를 작성하였다. 본 연구의 결과는 시군별 맞춤형 농업가뭄 대응정책의 기초자료 활용 가능하며, 농업가뭄 취약지역/상습가뭄지역에 대한 정보 제공이 가능할 것으로 판단된다.

  • PDF