• Title/Summary/Keyword: re-dissolution

Search Result 56, Processing Time 0.027 seconds

EVALUATION OF PH CONTROL AGENTS INFLUENCING ON CORROSION OF CARBON STEEL IN SECONDARY WATER CHEMISTRY CONDITION OF PRESSURIZED WATER REACTOR

  • Rhee, In Hyoung;Jung, Hyunjun;Cho, Daechul
    • Nuclear Engineering and Technology
    • /
    • v.46 no.3
    • /
    • pp.431-438
    • /
    • 2014
  • The effect of various pH agents on the corrosion behavior of carbon steel was investigated under a simulated secondary water chemistry condition of a pressurized water reactor (PWR) in a laboratory, and the steel's corrosion performance was compared with the field data obtained from Uljin NPP unit 2 reactor. All tests were carried out at temperatures of $50^{\circ}C-250^{\circ}C$and pH of 8.5 - 10. The pH at a given temperature was controlled by adding different agents. Laboratory data indicate that the corrosion rate of carbon steel decreased as the pH increased under the test conditions and the highest corrosion rate was measured at $150^{\circ}C$. This high corrosion rate may be related to high dissolution and instability of Fe oxide ($Fe_3O_4$) at $150^{\circ}C$. It was also found that an addition of ethanolamine (ETA) to ammonia was more effectivefor anticorrosion than ammonia alone, and that mixed treatment reduced 50% of iron or more at pHs of 9.5 or higher, especially in the steam generator (SG) and the moisture separator & re-heater (MSR).

Growth of Al2O3/Al Composite by Directed Metal Oxidation of Al Surface Doped with Sodium Source

  • Park, Hong Sik;Kim, Dong Seok;Kim, Do Kyung
    • Journal of the Korean Ceramic Society
    • /
    • v.50 no.6
    • /
    • pp.439-445
    • /
    • 2013
  • Both an unreinforced $Al_2O_3$/Al matrix and a ${\alpha}-Al_2O_3$ particulate reinforced composite have been produced by the oxidation of an Al surface doped with NaOH in the absence of any other dopant. Fabrication of the matrix was initiated by the formation of $NaAlO_2$, which provides a favorable surface structure for the matrix formation by breaking the protective $Al_2O_3$ layer on Al. During the matrix growth, the external surface of the growth front was covered with a very thin sodium-rich oxide. A cyclic formation process of the sodium-rich oxide on the growth surface was proposed for the sodium-induced directed metal oxidation process. This process involves dissolution of the sodium-rich oxide, motion of Na to the growth front, and re-formation of the oxide on the surface. Near-net-shape composites were fabricated by infiltrating an $Al_2O_3$/Al matrix into a ${\alpha}-Al_2O_3$ particulate preform, without growth barrier materials. The infiltration distance increased almost linearly in the NaOH-doped preform.

Synthesis of Nano-sized TiO2 Powder using a Hydrothermal Process (수열합성법을 이용한 TiO2 나노 입자의 합성)

  • Kim, Gang Hyuk;Lee, Woo Jin;Kim, Donggyu;Lee, Sung Keun;Lee, Sang Hwa;Kim, Insoo
    • Korean Journal of Metals and Materials
    • /
    • v.48 no.6
    • /
    • pp.543-550
    • /
    • 2010
  • This paper investigated the synthesis conditions of nano-sized $TiO_2$ powder in a hydrothermal process at a temperature range of $100{\sim}180^{\circ}C$ considering the precipitation agent, precipitation pH, reaction temperature and time. Titanium hydroxide formed by $NH_4OH$ exhibited a lower crystallization temperature than that by NaOH and formed less aggregated $TiO_2$ particles. As the precipitation pH increased above 8, the shape of the particles changed from spherical to needle form, which appeared to be caused by dissolution and re-precipitation of the titanium hydroxide in an alkali environment.

Development of New Processes for the Decommissioning Decontamination and for Treatment and Disposal of the Secondary Low- and Intermediate-Level Radioactive Waste

  • John, Jan;Bartl, Pavel;Cubova, Katerina;Nemec, Mojmir;Semelova, Miroslava;Sebesta, Ferdinand;Sobova, Tereza;Sul'akova, Jana;Vetesnik, Ales;Vopalka, Dusan
    • Journal of Nuclear Fuel Cycle and Waste Technology(JNFCWT)
    • /
    • v.19 no.1
    • /
    • pp.9-27
    • /
    • 2021
  • As an example of research activities in decontamination for decommissioning, new data are presented on the options for corrosion layer dissolution during the decommissioning decontamination, or persulfate regeneration for decontamination solutions re-use. For the management of spent decontamination solutions, new method based on solvent extraction of radionuclides into ionic liquid followed by electrodeposition of the radionuclides has been developed. Fields of applications of composite inorganic-organic absorbers or solid extractants with polyacrylonitrile (PAN) binding matrix for the treatment of liquid radioactive waste are reviewed; a method for americium separation from the boric acid containing NPP evaporator concentrates based on the TODGA-PAN material is discussed in more detail. Performance of a model of radionuclide transport, developed and implemented within the GoldSim programming environment, for the safety studies of the LLW/ILW repository is demonstrated on the specific case of the Richard repository (Czech Republic). Continuation and even broadening of these activities are expected in connection with the approaching end of the lifespan of the first blocks of the Czech NPPs.

Separation of Cerium Hydroxide from Wasted Cerium Polishing Powders by the Aeration and Acidity-Controlling Method (폐세륨연마재 건조분말로부터 공기산화 및 산도조절에 의한 수산화세륨의 분리회수)

  • Yoon Ho-Sung;Kim Chul-Joo;Eom Hyoung-Choon;Kim Joon-Soo
    • Resources Recycling
    • /
    • v.14 no.6 s.68
    • /
    • pp.3-9
    • /
    • 2005
  • In this study, the separation and recovery of cerium hydroxide was investigated from the wasted cerium polishing powders. Waste cerium polishing powder contains $64.5\;wt\%$ of rare earth oxide and the content of cerium oxide is $36.5\;wt\%$. Since cerium oxide, $56.3\%$ of rare earths, is the most stable state in rare earth, the dissolution of cerium oxide in acid solution is not easy. Therefore the process of rare earth oxide by sulfation and water leaching was examined in order to increase the recovery of rare earth. Rare earth elements were recovered in the form of $\Re{\cdot}Na(SO_{4})_{2}$ by the addition of sodium sulfate to leached solution. The slurry of rare earth hydroxide was prepared by the addition of $\Re{\cdot}Na(SO_{4})_{2}$ to sodium hydroxide solution. After the oxidation of cerous hydroxide($CE(OH)_{3}$) to ceric hydroxide($CE(OH)_{3}$) by aeration, ceric hydroxide was separated from other rare earth hydroxides by controlling the acidity of solution.

Characterization of the Behavior of Naturally Occurring Radioactive Elements in the Groundwater within the Chiaksan Gneiss Complex : Focusing on the Mineralogical Interpretation of Artificial Weathering Experiments (치악산 편마암 지질의 지하수 내 자연 방사성 원소의 거동 특성 연구: 인공풍화 실험을 통한 광물학적 해석)

  • Woo-Chun Lee;Sang-Woo Lee;Hyeong-Gyu Kim;Do-Hwan Jeong;Moon-Su Kim;Hyun-Koo Kim;Soon-Oh Kim
    • Korean Journal of Mineralogy and Petrology
    • /
    • v.36 no.4
    • /
    • pp.289-302
    • /
    • 2023
  • The study area was Gangnim-myeon, Hoengseong-gun, Gangwon-do, composed of the Chiaksan gneiss complex, and it was revealed that the concentrations of uranium (U) and thorium (Th) within the groundwater of the study area exceeded their water quality standards. Hence, artificial weathering experiments were conducted to elucidate mineralogically the mechanisms of their leaching using drilling cores obtained from the corresponding groundwater aquifers. First of all, the mineralogical compositions of core samples were observed, and the results indicated that the content of clinochlore, a member of the chlorite group of minerals that can form through low- and intermediate-temperature metamorphisms, was relatively higher. In addition, the Th concentration was measured ten times higher than that of U. The results of artificial weathering experiments suggested that the Th concentrations gradually increased through the dissolution of radioactive-element-bearing minerals up to the first day, and then they tended to decrease. It could be attributed to the fact that Th was leached with the dissolution of thorite, which might be a secondary mineral, and then dissolved Th was re-precipitated as the various forms of salt, such as sulfate. Even though the U content was lower than that of Th in the core samples, the U concentration was one hundred times higher than that of Th after the weathering experiments. It is likely caused by the gradual dissolution and desorption of U included in intensively weathered thorite or adsorbed as a form of UO22+ on the mineral surface. In addition, the leaching tendency of U and Th was positively correlated with the bicarbonate concentration. However, the concentrations between U and Th in groundwater exhibited a relatively lower correlation, which might result from the fact that they occurred from different sources, as aforementioned. Among various kinetic models, the parabolic diffusion and pseudo-second-order kinetic models were confirmed to best fit the dissolution kinetics of both elements. The period that would be taken for the U concentration to exceed its drinking-water standard was inferred using the regressed parameters of the best-fitted models, and the duration of 29.4 years was predicted in the neutral-pH aquifers with relatively higher concentrations of HCO3, indicating that U could be relatively quickly leached out into groundwater.

Geochemical Evolution of CO2-rich Groundwater in the Jungwon Area (중원 지역 탄산수의 지구화학적 진화)

  • 고용권
    • Economic and Environmental Geology
    • /
    • v.32 no.5
    • /
    • pp.469-483
    • /
    • 1999
  • Two different types of deep groundwaters occur together in the Jungwon area: $CO_2$-rich water and alkali water. Each water shows distrinct hydrogeochemical and environmental isotopic characteristics. The $CO_2$-rich waters are characterized by lower pH(6.0~6.4), higher Eh (25~85mV) and higher TDS content (up to 3,300 mg/l), whereas the alkali type waters have higher pH (9.1~9.5), lower Eh (-136~-128mV) and lower TDS content (168~254 mg/l). The CO2-rich waters ($Pco_2$=up to 1atm) were probably evolved by the local supply of deep $CO_2$ during the deep circulation, resulting in enhanced dissolution of surrounding rocks to yield high concentrations of $Ca^{2+}, Na^+, Mg^{2+}, K^+\; and \;HCO_3\;^-$ under low pH conditions. On the other hand, the alkali type waters ($Pco_2$=about 10-4.6 atm) were evolved through lesser degrees of simple wate/rock (granite) interaction under the limited suppy of $CO_2$. The alkali waters are relatively enriched in F- (up to 14mg/l), whereas the F- concentration of$CO_2$-rich water is lower (2.2~4.8 mg/l) due to the buffering by precipitation of fluorite. The oxygen-hydrogen isotopes and tritium data indicate that compared to shaltion ($\delta$18O=-9.5~-7.8$\textperthousand$),two different types fo deep groudwaters (<1.0TU)were both derived from pre-thermonuclear (more than 40 years old) meteoric waters with lighter O-H isotopic composition ($\delta$18O=-9.5~-7.8$\textperthousand$) and have evolved through prolonged water/rock interaction. The $CO_2$-rich waters also show some degrees of isotopic re-equilibration with $CO_2$ gas. The $\delta^{34}S$ values of dissolved sulfates (+24.2~+27.6$\textperthousand$) in the $CO_2$-rich waters suggest the reduction of sulfate by organic activity at depths. The carbon isotope data show that dissolved carbon in the $CO_2$-rich waters were possibly derived either from dissolution of calcite or from deep $CO_2$ gas. However, strontium isotope data indicate Ca in the $CO_2$-rich waters were derived mainly from plagioclase in granite, not from hydrothermal calcites.

  • PDF

Estimation of Geochemical Evolution Path of Groundwaters from Crystalline Rock by Reaction Path Modeling (반응경로 모델링을 이용한 결정질암 지하수의 지구화학적 진화경로 예측)

  • 성규열;박명언;고용권;김천수
    • Economic and Environmental Geology
    • /
    • v.35 no.1
    • /
    • pp.13-23
    • /
    • 2002
  • The chemical compositions of groundwaters from the granite areas mainly belong to Ca-HC0$_{3}$ and Na-HC0$_{3}$type, and some of these belong to Ca-(CI+S0$_{4}$) and Na-(CI+S0$_{4}$) type. Spring waters and groundwaters from anorthosite areas belong to Ca-HC03 and Na-HC03 type, respectively. The result of reaction path modeling shows that the chemical compositions of aqueous solution reacted with granite evolve from initial Ca-CI type, via CaHC0$_{3}$ type, to Na-HC0$_{3}$ type. The result of rain water-anorthosite interaction is similar to evolution path of granite reaction and both of these results agree well with the field data. In the reaction path modeling of rain watergranite/anorthosite reaction, as a reaction is progressing, the activity of hydrogen ion decreases (pH increases). The concentrations of cations are controlled by the dissolution of rock-forming minerals and precipitation and re-dissolution of secondary minerals according to the pH. The continuous addition of granite causes the formation of secondary minerals in the following sequence; gibbsite plus hematite, Mn-oxide, kaolinite, silica, chlorite, muscovite (a proxy for illite here), calcite, laumontite, prehnite, and finally analcime. In the anorthosite reaction, the order of precipitation of secondary minerals is the same as with granite reaction except that there is no silica precipitation and paragonite precipitates instead of analcime. The silica and kaolinite are predominant minerals in the granite and anorthosite reactions, respectively. Total quantities of secondary minerals in the anorthosite reaction are more abundant than those in the granite reaction.

Preparation of Solid Dosage Form containing SMEDDS of Simvastatin by Microencapsulation (심바스타틴 자가유화약물전달시스템의 마이크로캡슐화를 통한 고형제제의 개발)

  • Kang, Bok-Ki;Yoon, Bok-Young;Seo, Kwang-Su;Jeung, Sang-Young;Kil, Hee-Joo;Khang, Gil-Son;Lee, Hai-Bang;Cho, Sun-Hang
    • Journal of Pharmaceutical Investigation
    • /
    • v.33 no.2
    • /
    • pp.121-127
    • /
    • 2003
  • The objective of this study was to solidify the simvastatin self-microemulsifying drug delivery system (SMEDDS) and to improve the encapsulation efficiency of solidified alginate beads using sodium alginate. Typical simvastatin SMEDDS was composed of various oils, surfactants and cosurfactants. Also solidified-alginate beads was prepared by crosslinking liquid emulsion mixtures containing sodium alginate and other excipients (cetylpyridinum chloride (CP-Cl), hydroxypropyl methylcellulose, starch and so on). in $CaCl_2$ solution, it has been investigated that the drug release pattern and encapsulation efficiency were varied with the ratio of cationic lipid (CP-Cl). Solidified sodium alginate beads containing simvastatin SMEDDS were redispersed into media without re-aggregation. Oil droplet size of redispersed solidified-beads in media produced smaller than the initial size. The density of beads and drug loading amount were increased with increasing cationic lipid content. These systems have advantages of storage stability and predictability of drug release rate.

Effect of Glycine Adsorption on Polishing of Silicon Nitride in Chemical Mechanical Planarization Process (CeO2 슬러리에서 Glycine의 흡착이 질화규소 박막의 연마특성에 미치는 영향)

  • 김태은;임건자;이종호;김주선;이해원;임대순
    • Journal of the Korean Ceramic Society
    • /
    • v.40 no.1
    • /
    • pp.77-80
    • /
    • 2003
  • Adsorption of glycine on$Si_3N_4$powder surface has been investigated, which is supposed to enhance the formation of passive layer inhibiting oxidation in aqueous solution. In the basic solution, multinuclear surface complexing between Si and dissociated ligands was responsible for the saturated adsorption of glycine. In addition, $CeO_2$-based CMP slurry containing glycine was manufactured and then applied to planarize$SiO_2$and$Si_3N_4$thin film. Owing to the passivation by glycine, the removal rates, Rh, were decreased, however, the selectivities, RE(SiO$_2$)/RR($Si_3N_4$), increased and showed maximum at pH=12. The suppressed oxidation and dissolution by adsorbate were correlated with the dissociation behavior of glycine at different pH and subsequent chemical adsorption.