• Title/Summary/Keyword: re-aggregation

Search Result 34, Processing Time 0.023 seconds

Cake Reduction Mechanism in Coagulation-Crossflow Microfiltration Process (Crossflow 방식 응집-정밀여과 공정의 케이크층 저감 메커니즘)

  • Kim, Suhan;Park, Heekyung
    • Journal of Korean Society of Water and Wastewater
    • /
    • v.17 no.4
    • /
    • pp.519-527
    • /
    • 2003
  • Cake layer in crossflow microfiltration(CFMF) can be reduced by coagulation, enhancing membrane flux. This is because enlarging particle size by coagulation increases shear-induced diffusivity and the back-transport of rejected particles. However it is known that the enlarged particles are disaggregated by the shear force of the pump while passing through it. This study is to look at the disaggregation in relation with cake layer reducation. Kaolin and polysulfon hollow fiber microfilter are used for experiment. The reduction of cake resistance by coagulation is observed in a range of 17% to 53% at the various coagulation conditions. The particle size analysis results of the experiments show that aggregated particles in feed are completely disaggregated by pump but re-aggregation of particles occurs in membrane. This suggestes that the re-aggregation of particles is critical to cake reduction and flux enhancement, since the aggregated particles are completely broken. The mechanisms for re-aggregation in membrane are the same with those for coagulation in feed tank. Charge neutralization is better for CCFMF than sweep flocculation although it has two drawbacks in operation.

Pattern of Molecular Aggregation of Ginsenosides in Aqueous Solution (수용액(水溶液)에서 인삼배당체(人蔘配糖體)의 분자결합양상(分子結合樣相))

  • Park, Hoon;Lee, Mee-Kyoung;Park, Qwi-Hee
    • Applied Biological Chemistry
    • /
    • v.29 no.2
    • /
    • pp.198-206
    • /
    • 1986
  • For the information on micellization at each ginsenoside level aqueous solution of purified saponin of Panax ginseng root was dialyzed through dialysis tubing (MW 12,000) or eluted through Bio-Gel P-2 (MW 200-2,000) and analysed for ginsenosides by high performance liquid chromatography. Ginsenosides can be classified into three groups depending upon molecular aggregation pattern and spatial arrangement of hydrophilic parts in molecule. Group I that is large micelle former(aggregation number: above 10) and one side hydrophilic part (HP) includes $ginsenoside\;Rb_1$, $Rb_2$, Rc and Rd (diols). Group II thai is small micelle former (aggregation number:>10-1) and semi-two sales HP includes $Rg_2$, Rf (triol) and $Rg_3$ (diol). Group III that is no micelle former (aggregation number: 1) and two sides HP includes Re and $Rg_1$ (triol).

  • PDF

Measurement of red blood cell aggregation by analysis of light transmission in a pressure-driven slit flow system

  • Shin, S.;Park, M.S.;Jang, J.H.;Ky, Y.H.;Suh, J.S.
    • Korea-Australia Rheology Journal
    • /
    • v.16 no.3
    • /
    • pp.129-134
    • /
    • 2004
  • The aggregation characteristics of red blood cells (RBCs) were measured using a newly developed light-transmission slit rheometer. Conventional methods of RBC disaggregation such as the rotational Couette system were replaced with a pressure-driven slit flow system with a vibrational mechanism. Using a vibration generator, one can disaggregate the RBC aggregates stored in the slit. While shear stress decreases exponentially, instantaneous pressure and the transmitted light intensity were measured over time. Applying an abrupt shearing flow after disaggregation caused a rapid elongation of the RBCs followed by loss of elongation with the decreasing shear stress. While the shear stress is further decreasing, the RBCs start to re-aggregate and the corresponding transmitted intensity increases with time, from which the aggregation indices can be obtained using a curve-fitting program.

Deaggregation and Ultradispersion of Detonation Nanodiamonds in Polar Solvent Using Physicochemical Treatments (물리화학적 처리를 통한 극성 용매 내 나노다이아몬드의 탈응집 및 분산성 향상 연구)

  • Kim, Changkyu;Lee, Gyoung-Ja;Rhee, Changkyu
    • Journal of Powder Materials
    • /
    • v.20 no.6
    • /
    • pp.479-486
    • /
    • 2013
  • In the present work, physicochemical treatments were introduced for de-aggregation and stable dispersion of detonation nanodiamonds (DND) in polar solvents. The DNDs in water exhibited a particle size of 138 nm and high dispersion stability without particular treatment. However, the DNDs in ethanol were severely aggregated to several micrometers in size and showed poor dispersion stability with time. To break down aggregates of DNDs and enhance the dispersion stability of them in ethanol, mechanical force and chemical surfactant were introduced as functions of zirconia ball size, kind of surfactant and amount of surfactant added. From the analyses of average particle size and Turbiscan results, it was suggested that the size of DNDs in ethanol can be reduced by only mechanical force; however, the DNDs were re-aggregated due to high surface activity. The long-term dispersion stability can be achieved by applying mechanical force to break down the aggregates of DNDs and by preventing re-aggregation of them using proper surfactant.

Transient microfluidic approach to the investigation of erythrocyte aggregation: comparison and validation of the method

  • Hou, Jian-Xun;Shin, Se-Hyun
    • Korea-Australia Rheology Journal
    • /
    • v.20 no.4
    • /
    • pp.253-260
    • /
    • 2008
  • A method based on transient shear flow dynamics of red cell aggregates was developed to investigate reversible re-aggregation processes with decreasing shear flow. In the microchannel-flow aggregometry, the aggregated red blood cells that are subjected to continuously decreasing shear stress in microchannel flow were measured with the use of a laser-scattering technique. Both the laser-backscattered intensity and pressure were simultaneously measured with respect to time, resulting in shear stress ranging from $0{\sim}35\;Pa$ for a time period of less than 30 seconds. The time dependent recording of the backscattered light intensity (syllectogram) yielded an upward convex curve with a peak point, which reflected the transition threshold of aggregation in the RBC suspensions. Critical-time and critical-shear stress corresponding to the peak point were examined by varying the initial pressure-differential and the micro channel depth, and these results showed good potential for being used as new aggregation indices. In the present study, these newly proposed indices were also validated by differentiating the effect of fibrinogen on RBC aggregation and then these indices were compared to the conventional indices that were measured by a rotational aggregometer.

Simultaneous measurements of red blood cell aggregation and blood viscosity in a slit rheometry with light transmission analysis (광 투사법을 이용한 슬릿 점도계에서의 적혈구 응집성 및 점도 측정에 관한 연구)

  • Park, Myung-Su;Ku, Yun-Hee;Shin, Se-Hyun;Suh, Jang-Su
    • Proceedings of the KSME Conference
    • /
    • 2004.04a
    • /
    • pp.1678-1681
    • /
    • 2004
  • The light-transmission technique has been applied to a slit rheometer for measuring red blood cell aggregation as well as blood viscosity over a range of shear rates. For measurement of blood viscosity and aggregation, instantaneous pressure and transmit-light intensity are measured with time. Using a precision pressure measurement, one can determine the shear stress and shear rate. In addition, a transmitted light through a blood sample indicates degree of RBC aggregation. With abruptly flowing with high shear rate, RBCs rapidly disaggregate and the intensity of the transmitted light becomes low. When continuously flowing with decreasing shear rate, RBCs tend to re-aggregate and the corresponding transmit-intensity gradually increases with time. The light intensity as a degree of RBC aggregation is plotted against shear rate and compared with blood viscosity. The advantages of this design are dual measurement at a time, simplicity, i.e., ease of operation and no moving parts, low cost, short operating time, and the disposable kit which is contacted with blood sample.

  • PDF

Fault Tolerant Data Aggregation for Reliable Data Gathering in Wireless Sensor Networks (무선센서네트워크에서 신뢰성있는 데이터수집을 위한 고장감내형 데이터 병합 기법)

  • Baek, Jang-Woon;Nam, Young-Jin;Jung, Seung-Wan;Seo, Dae-Wha
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.35 no.9B
    • /
    • pp.1295-1304
    • /
    • 2010
  • This paper proposes a fault-tolerant data aggregation which provides energy efficient and reliable data collection in wireless sensor networks. The traditional aggregation scheme does not provide the countermeasure to packet loss or the countermeasure scheme requires a large amount of energy. The proposed scheme applies caching and re-transmission based on the track topology to the adaptive timeout scheduling. The proposed scheme uses a single-path routing based on the traditional tree topology at normal, which reduces the dissipated energy in sensor nodes without any countermeasure against packet loss. The proposed scheme, however, retransmits the lost packet using track topology under event occurrences in order to fulfill more accurate data aggregation. Extensive simulation work under various workloads has revealed that the proposed scheme decrease by 8% in terms of the dissipated energy and enhances data accuracy 41% when the potential of event occurrence exists as compared with TAG data aggregation. And the proposed scheme decrease by 53% in terms of the dissipated energy and shows a similar performance in data accuracy when the potential of event occurrence exists as compared with PERLA data aggregation.

New Retransmission Method using the minimum MPDU starting Spacing in Two-level Aggregation of IEEE 802.11n (IEEE 802.11n의 2-레벨 집적 방식에서 최소 MPDU 시작 간격을 이용하는 새로운 재전송 방법)

  • Shin, In Cheol;Kim, Dong-Hoi
    • Journal of Broadcast Engineering
    • /
    • v.20 no.2
    • /
    • pp.300-309
    • /
    • 2015
  • In IEEE 802.11n WLANs(Wireless Local Area Networks), to support high throughput, MAC(Media Access Control) layer adopts A-MSDU(Aggregate-MAC Service Data Unit) and A-MPDU(Aggregate-MAC Protocol Data Unit). Generally, as the A-MPDU uses a selective retransmission capability, A-MPDU provides higher throughput than A-MSDU. However, although A-MPDU uses the selective re-transmission capability, if the size of MPDU within A-MPDU is smaller than the size of minimum MPDU starting spacing, A-MPDU can reduce throughput because of the overhead of retransmission owing to the addition of delimiter, that is a dummy MPDU. Therefore, to overcome the above problem, two-level Aggregation method, where the small MPDU within A-MPDU is replaced by not delimiter but A-MSDU, has been introduced. In the two-level Aggregation method, the existing re-transmission scheme retransmits only A-MPDU, but if the size of retransmission data is smaller than the size of the minimum MPDU starting spacing, the proposed retransmission scheme retransmits the aggregated retransmission data and MSDUs. Therefore, we know that the proposed retransmission scheme have better throughput that the existing retransmission scheme.

Research on the enhancement of throughput for traffic in WLAN (초고속 무선 랜에서 트래픽 간의 처리율 향상을 위한 연구)

  • Song, Byunjin;Lee, Seonhee
    • Journal of Satellite, Information and Communications
    • /
    • v.10 no.3
    • /
    • pp.53-56
    • /
    • 2015
  • In this paper, we want provide improved services with faster transmission, IEEE 802.11n was standardized. A-MPDU (Aggregation MAC Protocol Data UNIT) is a vital function of the IEEE 802.11n standard, which was proposed to improve transmission rate by reducing frame transmission overhead. In this paper, we show the problems of TCP retransmission with A-MPDU and propose a solution utilizing the property of TCP cumulative ACK. If the transmission of an MPDU subframe fails, A-MPDU mechanism allows selective re-transmission of failed MPDU subframe in the MAC layer. In TCP traffic transmission, however, a failed MPDU transmission causes TCP Duplicate ACK, which causes unnecessary TCP re-transmission. Furthermore, congestion control of TCP causes reduction in throughput. By supressing unnecessary duplicate ACKs the proposed mechanism reduces the overhead in transmitting redundant TCP ACKs, and transmitting only a HS-ACK with the highest sequence number. By using the RACK mechanism, through the simulation results, it was conrmed that the RACK mechanism increases up to 20% compared the conventional A-MPDU, at the same time, it tightly assures the fairness among TCP flows.

Molecular Chaperones in Protein Quality Control

  • Lee, Suk-Yeong;Tsai, Francis T.F.
    • BMB Reports
    • /
    • v.38 no.3
    • /
    • pp.259-265
    • /
    • 2005
  • Proteins must fold into their correct three-dimensional conformation in order to attain their biological function. Conversely, protein aggregation and misfolding are primary contributors to many devastating human diseases, such as prion-mediated infections, Alzheimer's disease, type II diabetes and cystic fibrosis. While the native conformation of a polypeptide is encoded within its primary amino acid sequence and is sufficient for protein folding in vitro, the situation in vivo is more complex. Inside the cell, proteins are synthesized or folded continuously; a process that is greatly assisted by molecular chaperones. Molecular chaperones re a group of structurally diverse and mechanistically distinct proteins that either promote folding or prevent the aggregation of other proteins. With our increasing understanding of the proteome, it is becoming clear that the number of proteins that can be classified as molecular chaperones is increasing steadily. Many of these proteins have novel but essential cellular functions that differ from that of more 'conventional' chaperones, such as Hsp70 and the GroE system. This review focuses on the emerging role of molecular chaperones in protein quality control, i.e. the mechanism that rids the cell of misfolded or incompletely synthesized polypeptides that otherwise would interfere with normal cellular function.