• 제목/요약/키워드: raw starch-digesting amylase

검색결과 12건 처리시간 0.031초

알칼리 내성 Bacillus sp.가 생산하는 Amylase의 생전분 분해 특성 (Hydrolysis Characteristics of Amylase from Alkaline-Tolerant Bacillus sp. on the Raw Starch)

  • 이신영;조택상
    • KSBB Journal
    • /
    • 제13권5호
    • /
    • pp.621-625
    • /
    • 1998
  • The raw starch hydrolysis by amylase prepared from alkaline-tolerant Bacillus sp. were investigated. Degree of hydrolysis(%) of 5%(w/v) raw rice, corn and potato starch by this enzyme were about 40, 25 and 20%, respectively. The hydrolysis action on raw starch by change of blue value was similar to the action pattern of exo ${\beta}$-amylase. The hydrolysis products of rice starch were mainly glucose and maltose. Oligosaccarides were also detected. From the above results, this enzyme was considered as exo type ${\alpha}$-amylase. This enzyme activity on the raw starch and the gelatinized starch were 28.40 and 86.60 IU/mg protein, respectively, and the ratio of raw starch-digesting activity to gelatinized starch-digesting activity (raw starch digestivity) was about 32%. The Km values for the raw and the gelatinized starch were 4.22 and 3.0mg/mL, respectively, and the VmaX values were 0.20 and 0.31mg/mL/min, respectively.

  • PDF

Isolation of Soil Bacteria Secreting Raw-Starch-Digesting Enzyme and the Enzyme Production

  • Sung, Nack-Moon;Kim, Keun;Choi, Sung-Ho
    • Journal of Microbiology and Biotechnology
    • /
    • 제3권2호
    • /
    • pp.99-107
    • /
    • 1993
  • Two strains (No. 26 and 143) of bacteria which secrete both pectinase and raw-starch-digesting amylase simultaneously, were isolated from various domestic soil samples. The two bacteria were identified as Pasteurella ureae judging by their morphological and physiological characteristics. The optimal culture conditions for the production of raw-starch-digesting enzyme by the Pasteurella ureae 26 were using $NH_4NO_3$ as the nitrogen source at $37^{\circ}C$ with the pH of 7.5, and 15 of C/N ratio. Since the enzyme was produced only when raw or soluble starch was used as a carbon source, but not when glucose or other sugars was used, the enzyme was considered to be an inducible enzyme by starch. Thin layer chromatography of the hydrolyzed product of starch by the raw-starch-digesting enzyme of the strain No. 26 showed that glucose, maltose and other oligosaccharides were present in the hydrolyzates, and therefore the enzyme seemed to be ${\alpha}-amylase$. The enzyme had adsorbability onto raw com starch in the pH range of 3 to 9.

  • PDF

Sequencing of the RSDA Gene Encoding Raw Starch-Digesting $\alpha$-Amylase of Bacillus circulans F-2: Identification of Possible Two Domains for Raw Substrate-Adsorption and Substrate-Hydrolysis

  • Kim, Cheorl-Ho
    • Journal of Microbiology and Biotechnology
    • /
    • 제2권1호
    • /
    • pp.56-65
    • /
    • 1992
  • The complete nucleotide sequence of the Bacillus circulans F-2 RSDA gene, coding for raw starch digesting a-amylase (RSDA), has been determined. The RSDA structure gene consists of an open reading frame of 2508 bp. Six bp upstream of the translational start codon of the RSDA is a typical gram-positive Shine-Dalgarno sequence and the RSDA encodes a preprotein of 836 amino acids with an Mr of 96, 727. The gene was expressed from its own regulatory region in E. coli and two putative consensus promoter sequences were identified upstream of a ribosome binding site and an ATG start codon. Confirmation of the nucleotide sequence was obtained and the signal peptide cleavage site was identified by comparing the predicted amino acid sequence with that derived by N-terminal analysis of the purified RSDA. The deduced N-terminal region of the RSDA conforms to the general pattern for the signal peptides of secreted prokaryotic proteins. The complete amino acid sequence was deduced and homology with other enzymes was compared. The results suggested that the Thr-Ser-rich hinge region and the non-catalytic domain are necessary for efficient adsorption onto raw substrates, and the catalytic domain (60 kDa) is necessary for the hydrolysis of substrates, as suggested in previous studies (8, 9).

  • PDF

Streptomyces sp. 4M-2에 의한 생전분 분해효소의 생산 (Production of Raw Starch Digesting Enzyme by Streptomyces sp. 4M-2)

  • 최성현;김찬조;오만진;이종수
    • 한국미생물·생명공학회지
    • /
    • 제16권6호
    • /
    • pp.457-462
    • /
    • 1988
  • 방사균이 생산하는 생전분 분해효소를 식품공업에 이용하기 위한 자료를 얻고자 메주로부터 생전분 분해력이 강한 방사균을 분리하여 Streptomyces sp.로 동정하였다. 밀기울침출액 기본배지에 4%의 호화옥수수전분과 0.16%의 KNO$_3$를 첨가하고 pH를 6.2 로 조정한 다음 분리균주를 접종한 후 3$0^{\circ}C$에서 5~6일간 진탕배양하였을 때 33RSU/$m\ell$의 생전분 분해효소를 생산하였다. 또한 효소생산에 효과적인 금속 이온은 인정되지 않았으며 Hg$^{2+}$ 및 Co$^{2+}$ 등은 저해가 현저하였다.

  • PDF

A Newly Isolated Rhizopus microsporus var. chinensis Capable of Secreting Amyloytic Enzymes with Raw-Starch-Digesting Activity

  • Li, Yu-Na;Shi, Gui-Yang;Wang, Wu;Wang, Zheng-Xiang
    • Journal of Microbiology and Biotechnology
    • /
    • 제20권2호
    • /
    • pp.383-390
    • /
    • 2010
  • A newly isolated active producer of raw-starch-digesting amyloytic enzymes, Rhizopus microsporus var. chinensis CICIM-CU F0088, was screened and identified by morphological characteristics and molecular phylogenetic analyses. This fungus was isolated from the soil of Chinese glue pudding mill, and produced high levels of amylolytic activity under solid-state fermentation with supplementation of starch and wheat bran. Results of thin-layer chromatography showed there are two kinds of amyloytic enzymes formed by this strain, including one $\alpha$-amylase and two glucoamylases. It was found in the electron microscope experiments that the two glucoamylases can digest raw corn starch and have an optimal temperature of $70^{\circ}C$. These results signified that amyloytic enzymes secreted by strain Rhizopus microsporus var. chinensis CICIM-CU F0088 were types of thermostable amyloytic enzymes and able to digest raw corn starch.

Streptomyces sp. 4M-2가 생산하는 생전분 분해효소의 특성 (Characteristics of Raw Starch-Digesting Enzyme from Streptomyces sp. 4M-2)

  • 최성현;김찬조;오만진;이종수
    • 한국미생물·생명공학회지
    • /
    • 제17권2호
    • /
    • pp.136-141
    • /
    • 1989
  • Streptomyces sp. 4M-2의 생전분 분해효소를 황산 암모니움 염석과 이온교환 크로마토그라피 및 Gel 여과 등으로 비활성이 51.22 RSU/mg, 수율 4.5%로 정제할 수 있었다. 정제효소의 분자량은 102,000이었으며 생옥수수 전분에 대한 Km값은 44.44mg/m1 이었다 정제효소의 작용 최적온도는42$^{\circ}C$, pH는 5.5였고 $Ca^{2+}$$Ba^{2+}$의 첨가에 의해 효소활성이 증가되었다. 정제효소는 옥수수 amylose를 가장 잘 분해하고 감자전분도 비교적 잘 분해하였다. 이 효소에 의한 옥수수 생전분의 분해산물은 주로 maltose와 maltotriose였고 소량의 glucose와 oligosaccharide도 검출되었으므로 $\alpha$-amylase 계통의 효소로 추정된다.

  • PDF

$\beta$-Amylase System Capable of Hydrolyzing Raw Starch Granules from Bacillus polymyxa No. 26 and Bacterial Identification

  • SOHN, CHEON-BAE;MYUNG-HEE KIM;JUNG-SURL, BAE;CHEORL-HO KIM
    • Journal of Microbiology and Biotechnology
    • /
    • 제2권3호
    • /
    • pp.183-188
    • /
    • 1992
  • A soil bacterium which produces raw starch-digesting $\beta$-amylase in culture medium, has been screened from soils. One strain, isolated and identified as Bacillus polymyxa No. 26, was selected as a $\beta$-amylase producing bacterium. Morphological and biological characteristics of the strain were found to be similar to those of a strain belonging to B. polymyxa. The electron microscopic observations of the bacterial vegetative cells and sporulated cells were extensively done to know the corelation between the enzyme synthesis and sporulation. When the bacterium was cultured on the appropriate media (3% dextrin, 0.3% beef extract, 0.5% polypeptone, 1% yeast extract and 0.3% NaCl at pH 7.0 for 4 days) raw starch-digestible $\beta$-amylase was produced extracellularly. This strain produced 130 units of $\beta$-amylase per ml in a culture medium containing 3% dextrin at $30^\circ{C}$. This value is compared to those of other $\beta$-amylase-producing strains. The optimum pH and temperature for crude enzymes were pH 6.5 to 7.0 and $50^\circ{C}$, respectively. The enzymes were stable between pH 5.5 and 9.0 for 30 min at $45^\circ{C}$.

  • PDF

A New Raw-Starch-Digesting ${\alpha}$-Amylase: Production Under Solid-State Fermentation on Crude Millet and Biochemical Characterization

  • Maktouf, Sameh;Kamoun, Amel;Moulis, Claire;Remaud-Simeon, Magali;Ghribi, Dhouha;Chaabouni, Semia Ellouz
    • Journal of Microbiology and Biotechnology
    • /
    • 제23권4호
    • /
    • pp.489-498
    • /
    • 2013
  • A new Bacillus strain degrading starch, named Bacillus sp. UEB-S, was isolated from a southern Tunisian area. Amylase production using solid-state fermentation on millet, an inexpensive and available agro-resource, was investigated. Response surface methodology was applied to establish the relationship between enzyme production and four variables: inoculum size, moisture-to-millet ratio, temperature, and fermentation duration. The maximum enzyme activity recovered was 680 U/g of dry substrate when using $1.38{\times}10^9$ CFU/g as inoculation level, 5.6:1 (ml/g) as moisture ratio (86%), for 4 days of cultivation at $37^{\circ}C$, which was in perfect agreement with the predicted model value. Amylase was purified by Q-Sepharose anion-exchange and Sephacryl S-200 gel filtration chromatography with a 14-fold increase in specific activity. Its molecular mass was estimated at 130 kDa. The enzyme showed maximal activity at pH 5 and $70^{\circ}C$, and efficiently hydrolyzed starch to yield glucose and maltose as end products. The enzyme proved its efficiency for digesting raw cereal below gelatinization temperature and, hence, its potentiality to be used in industrial processes.

Raw Starch-digesting Amylase is Comprised of two Distinct Domains of Catalytic and Substrate-Adsorbable Domain: Role of the C- Terminal Region in Raw-Starch-Binding

  • Kim, Cheorl-Ho
    • 한국미생물생명공학회:학술대회논문집
    • /
    • 한국미생물생명공학회 2001년도 Proceedings of 2001 International Symposium
    • /
    • pp.40-45
    • /
    • 2001
  • Raw starch-digesting amylase (BF-2A, M.W. 93, 000 Da) from Bacillus circulans F-2 was converted to two components during digestion with subtilisin. Two components were separated and designated as BF-2A' (63, 000 Da) and BF-2B (30, 000 Da), respectively. BF-2A' exhibited the same hydrolysis curve for soluble starch as the original amylase (BF-2A). Moreover, the catalytic activities of original and modified enzymes were indistinguishable in $K_{m}$, Vmax for, and in their specific activity for soluble starch hydrolysis. However, its adsorbability and digestibility on raw starch was greatly decreased. Furthermore, the enzymatic action pattern on soluble starch was greatly different from that of the BF-2A. A smaller peptide (BF-2B) showed adsorb ability onto raw starch. By these results, it is suggested that the larger peptide (BF-2A') has a region responsible for the expression of the enzyme activity to hydrolyze soluble substrate, and the smaller peptide (BF-2B) plays a role on raw starch adsorption. A similar phenomenon is observed during limited proteinase K, thermolysin, and endopeptidase Glu-C proteolysis of the enzyme. Fragments resulting from proteolysis were characterized by immunoblotting with anti-RSDA. The proteolytic patterns resulting from proteinase K and subtilisin were the same, producing 63- and 30-kDa fragments. Similar patterns were obtained with endopeptidase Glu-C or thermolysin. All proteolytic digests contained a common, major 63-kDa fragment. Inactivation of RSDA activity results from splitting off the C-terminal domain. Hence, it seems probable that the protease sensitive locus is in a hinge region susceptible to cleavage. Extracellular enzymes immunoreactive toward anti-RSDA were detected through whole bacterial cultivation. Proteins of sizes 93-, 75-, 63-, 55-, 38-, and 31-kDa were immunologically identical to RSDA. Of these, the 75-kDa and 63-kDa proteins correspond to the major products of proteolysis with Glu-C and thermolysin. These results postulated that enzyme heterogeneity of the raw starch-hydrolysis system might arise from the endogeneous proteolytic activity of the bacterium. Truncated forms of rsda, in which the gene sequence encoding the conserved domain had been deleted, directed the synthesis of a functional amylase that did not bind to raw starch. This indicates that the conserved region of RSDA constitutes a raw starch-binding domain, which is distinct from the active centre. The possible role of this substrate-binding region is discussed.d.

  • PDF

Molecular Cloning and Determination of the Nucleotide Sequence of Raw Starch Digesting α-Amylase from Aspergillus awamori KT-11

  • Matsubara, Takayoshi;Ammar, Youssef Ben;Anindyawati, Trisanti;Yamamoto, Satoru;Ito, Kazuo;Iizuka, Masaru;Minamiura, Noshi
    • BMB Reports
    • /
    • 제37권4호
    • /
    • pp.429-438
    • /
    • 2004
  • Complementary DNAs encoding $\alpha$-amylases (Amyl I, Amyl III) and glucoamylase (GA I) were cloned from Aspergillus awamori KT-11 and their nucleotide sequences were determined. The sequence of Amyl III that was a raw starch digesting $\alpha$-amylase was found to consist of a 1,902 bp open reading frame encoding 634 amino acids. The signal peptide of the enzyme was composed of 21 amino acids. On the other hand, the sequence of Amyl I, which cannot act on raw starch, consisted of a 1,500 bp ORF encoding 499 amino acids. The signal peptide of the enzyme was composed of 21 amino acids. The sequence of GA I consisted of a 1,920 bp ORF that encoded 639 amino acids. The signal peptide was composed of 24 amino acids. The amino acid sequence of Amyl III from the N-terminus to the amino acid number 499 showed 63.3% homology with Amyl I. However, the amino acid sequence from the amino acid number 501 to C-terminus, including the raw-starch-affinity site and the TS region rich in threonine and serine, showed 66.9% homology with GA I.