• Title/Summary/Keyword: raw materials

Search Result 3,088, Processing Time 0.035 seconds

Combustion and Mechanical Properties of Fire Retardant Treated Waste Paper-Waste Acrylic Raw Fiber Composite Board

  • Eom, Young Geun;Yang, Han-Seung;Kim, Hyun-Joong
    • Journal of the Korean Wood Science and Technology
    • /
    • v.31 no.3
    • /
    • pp.1-10
    • /
    • 2003
  • Shredded waste newspapers, waste acrylic raw fibers, and urea-formaldehyde (UF) adhesives, at 10% by weight on raw material, were used to produce recycled waste paper-waste acrylic raw fiber composite boards in laboratory scale experiments. The physical and mechanical properties of fire retardant treated recycled waste paper-waste acrylic raw fiber composite boards were examined to investigate the possibility of using the composites as internal finishing materials with specific gravities of 0.8 and 1.0, containing 5, 10, 20, and 30(wt.%) of waste acrylic raw fiber and 10, 15, 20, and 25(wt.%) of fire retardant (inorganic chemical, FR-7®) using the fabricating method used by commercial fiberboard manufacturers. The bending modulus of rupture increased as board density increased, decreased as waste acrylic raw fiber content increased, and also decreased as the fire retardant content increased. Mechanical properties were a little inferior to medium density fiberboard (MDF) or hardboard (HB), but significantly superior to gypsum board (GB) and insulation board (IB). The incombustibility of the fire retardant treated composite board increased on increasing the fire retardant content. The study shows that there is a possibility that composites made of recycled waste paper and waste acrylic raw fiber can be use as fire retardant internal finishing materials.

Simulation on the Alternation of Limestone for Portland Cement Raw Material by Steel By-products Containing CaO (CaO 함유 철강 부산물을 활용한 시멘트 원료 석회석 대체 시뮬레이션)

  • Jae-Won Choi;Byoung-Know You;Min-Cheol Han
    • Journal of the Korean Recycled Construction Resources Institute
    • /
    • v.11 no.1
    • /
    • pp.1-8
    • /
    • 2023
  • In this study, to reduce CO2 emission in the cement manufacturing process, we evaluated the limestone that is used as a raw material for cement, substituted with steel slag by the various substituted levels. Based on the chemical composition of each raw materials including limestone, and blast furnace slow cooling slag, converter slag, and KR slag as an alternative raw material, we simulated the optimal cement raw mixture by the substitution levels of limestone. Test results indicated that the steel slags contain a certain level of CaO that can be used as alternative decarbonated raw materials, and it has enough to partially reduce the amount of limestonem. And we estimated the maximum usable levels of each raw material. In particular, it was confirmed that by using a mixture of these raw materials rather than using them one by one, the effect of reducing limestone was increased and CO2 emission from the cement manufacturing process could be reduced.

A Study on the Least Cost Ration Formulation by Linear Programming -For the multi-mix problem - (선형계획법에 의한 최소비용사료 배합에 관한 연구)

  • 민병준
    • Korean Journal of Poultry Science
    • /
    • v.8 no.1
    • /
    • pp.25-30
    • /
    • 1981
  • This study was conducted to find the method that the least-cost formula can be determined thus allowing a better keeping of raw material supplies under the constraints having to be used some raw materials that are either in limited supply or for other reason in restricted use. In this study, it was considered that three kinds of feed were produced under limited supply of six kinds of raw materials, and data for the analysis were collected from a feed mill in southern part of Korea. According to the result of this study, it was proved better to determine the least-cost formula as the multi-mix problem than as the simple least-cost problem when more than two kinds of feed were produced wilt limited supply of raw materials.

  • PDF

An Integrated Inventory Model for a Three-Layer Supply Chain with Multiple Items (3단계 공급사슬에서 다완제품의 통합재고모형에 관한 연구)

  • Kim, Dae-Hong
    • Journal of Korean Society of Industrial and Systems Engineering
    • /
    • v.37 no.4
    • /
    • pp.116-125
    • /
    • 2014
  • In this paper, we investigate an inventory and production system in a three-layer supply chain system involving a single supplier, single manufacturer and multiple retailers. Earlier study in this type of supply chain only consider a single raw material in order to produce single item, but we consider raw materials in order to produce multiple items. It is assumed that the cycle time at each stage is an integer multiple of the adjacent downstream stage. We develop an iterative solution procedure to find the order quantity for the multiple items and raw materials that minimizes the supply chain-wide total cost per unit time of the supplier and manufacturer's raw materials ordering and holding, setup and finished items holding, the retailer's ordering and inventory holding. Numerical examples are presented to show that the proposed heuristic gives good performance.

Minimizing environmental impact from optimized sizing of reinforced concrete elements

  • Santoro, Jair F.;Kripka, Moacir
    • Computers and Concrete
    • /
    • v.25 no.2
    • /
    • pp.111-118
    • /
    • 2020
  • The construction field must always explore sustainable ways of using its raw materials. Studying the environmental impact generated by reinforced concrete raw materials during their production and transportation can contribute to reducing this impact. This paper initially presents the carbon dioxide emissions from reinforced concrete raw materials, quantified per kilo of raw material and per cubic meter of concrete with different characteristic strengths, for southern Brazil. Subsequently, reinforced concrete elements were optimized to minimize their environmental impact and cost. It was observed that lower values of carbon dioxide emissions and cost savings are generated for less resistant concrete when the structural element is a beam, and that reductions in the cross section dimensions of the beams, sized based on the use of higher strength concrete, may not compensate for the increased environmental impact and costs. For the columns, the behavior differed, presenting lower values of carbon dioxide emissions and costs for higher concrete strengths. The proposed methodology, as well as the results obtained, can be used to support structural projects that have less impact on the environment.

Calcination Properties of Cement Raw Meal and Limestone with Oxidation/Reduction Condition (산화/환원 소성분위기에서 석회석 및 시멘트 원료물질의 소성거동 특성)

  • Moon, Ki-Yeon;Choi, Moon-Kwan;Cho, Jin-Sang;Cho, Kye-Hong
    • Resources Recycling
    • /
    • v.29 no.5
    • /
    • pp.64-72
    • /
    • 2020
  • When the multi-stage combustion process is applied to the cement kiln to reduce nitrogen oxide emissions in the cement industry, oxidation/reduction section that can increase combustion efficiency by reducing NOx to NO and completely burning unburned materials is essential In this study, when applied the oxidation/reduction system of the cement kiln preheater and calciner, the optimal oxidation/reduction calcination crisis that can secure the quality stability of the final product, cement clinker, was to be observed macroscopically, and the mass change of raw materials according to the burning conditions, decarbonation rate, and calcination rate were investigated. The results showed that the thermal decomposition of raw materials tends to be promoted in the oxidation condition rather than in the reduction condition, and that the thermal decomposition of limestone, which has a relatively high CaO content, is carried out later than that of cement raw meal, which is thought to be caused by the CO2 fractionation in the kiln. The thermal decomposition properties of raw materials according to oxidation/reducing burning condition showed a relatively large difference in temperature range lower than normal limestone themal decomposition temperature, which is thought to be expected to improve the thermal efficiency of raw materials according to the formation of oxidation condition in the section 750℃ of burning temperature. However, for this study, lab scale. Because there is a difference from the field process as a scale study, it is deemed necessary to verify the actual test results of the pilot scale.

The Development for guideline of raw matrials on technical document of Medical Device (의료기기 허가.기술문서 원자재 작성 가이드라인 개발)

  • Park, Ki-Jung;Ryu, Gyu-Ha;Lee, Sung-Hee;Lee, Chang-Hyung;Jung, Jin-Baek;Lee, Jae-Keun;Hur, Chan-Hoi;Kim, Hyung-Bum;Choi, Min-Yong;Kim, Yong-Woo;Hwang, Sang-Yeon;Jung, Jae-Hoon;Koo, Ja-Jung;Hong, Hye-Kyung;Lim, Kyung-Taek;Kang, Se-Ku;Kwak, Young-Ji
    • Journal of Biomedical Engineering Research
    • /
    • v.31 no.6
    • /
    • pp.434-437
    • /
    • 2010
  • For approval of medical devices manufactured or imported, submission of technical documents as well as the application form is required. The manufacturer (or importer) should properly identify the raw materials the applied product is made of and the manufacturing processes the product undergoes before it is shipped in the application form. In the technical documents, scientific data to evaluate the efficacy, safety, and quality of the applied product that has been described in the application form should be provided. Therefore, identifying the raw materials that were used for the parts of the applied product and describing the physical and chemical characteristics of the raw materials are quite important and essential in ensuring the efficacy, safety, and quality of the applied product. To describe the physical and chemical characteristics of the raw materials correctively, the applicant is required to have broad knowledge in the scientific fields such as chemical, polymer, metal, and ceramic science and engineering. But most of the applicant are not experts in these fields, so that the description in the application form often includes wrong and improper descriptions. Thus, we developed a guideline which explains the raw materials for medical devices, show the their examples. The purpose of this description guideline is to help the applicant properly completing the "Raw materials or constituents and their volumes" part in the application form.

Leaching Properties of Water-Soluble Hexavalent Chromium by Manufacturing Condition of Cement Clinker (클링커 제조 조건에 따른 수용성 6가 크롬 용출 특성)

  • Lee, Jong-Kyu;Chu, Yong-Sik;Song, Hun
    • Korean Journal of Materials Research
    • /
    • v.21 no.12
    • /
    • pp.679-684
    • /
    • 2011
  • One of the trace constituents included in cement clinker, chromium, has become prominent and highly noticed lately as a social issue both inside and outside of this country because it affects the human body negatively. The purpose of the present study was to investigate leaching properties of water-soluble hexavalent chromium by different manufacturing conditions of cement clinker. Raw materials were prepared to add different $SiO_2$, $Al_2O_3$ and $Fe_2O_3$ sources. After the raw materials, such as limestone, sand and clay, iron ore was pulverized and mixed, and the raw meal was burnt at $1450^{\circ}C$ in a furnace with an oxidizing atmosphere. Leaching of soluble hexavalent chromium showed a tendency to decrease with an increasing LSF and IM. However, leaching of soluble hexavalent chromium increased with an increasing S.M. Alkali contents of iron source minerals is closely related to the leaching properties of soluble hexavalent chromium. Green sludge has the highest content of alkali added; leaching of water-soluble hexavalent chromium was mostly high. In order to reduce the water-soluble hexavalent chromium in cement, reducing the alkali content in raw materials is important.

An integrated manufacturing and distribution model for a multi-echelon structure

  • Hwang, Heung-Suk
    • Proceedings of the Korean Operations and Management Science Society Conference
    • /
    • 1990.04a
    • /
    • pp.222-244
    • /
    • 1990
  • A multi-echelon structure of manufacturing and distribution system in considered, where the raw materials are transformed into a finished good through a number to manufacturing echelons and it is distributed to the lower echelons(retailers, or customers). The raw material, work-in-process, finished good inventory and the distribution costs are unified into one model. The objective is to determine the ordering policy of raw materials, manufacturing lot size, the number of sub-batch and the distribution policy of the finished good which minimize the annual total system cost. A computer program for a heuristic search technique is developed, by which a numerical example is examined.

  • PDF

The Effect of the Purity of Raw Materials on the Purity of Silicon Extracted by Solvent Refining and Centrifugation (용매정제법과 원심분리법으로 추출한 Si의 순도에 미치는 장입 원재료 순도의 영향)

  • Cho, Ju-Young;Seo, Kum-Hee;Kang, Bok-Hyun;Kim, Ki-Young
    • Korean Journal of Metals and Materials
    • /
    • v.50 no.12
    • /
    • pp.907-911
    • /
    • 2012
  • High purity silicon can be obtained from Al-Si alloys by a combination of solvent refining and centrifugation. Silicon purification by crystallization of silicon from an Al-Si alloy melt was carried out using 2N and 4N purity aluminum and 2N purity silicon as raw materials. The effect of the purity of raw materials on the final silicon ingot purity by centrifugation was investigated for an Al-50 wt% Si alloy. Alloys were melted using an electrical resistance furnace, and then poured into a centrifuging apparatus. A silicon lump like foam was obtained after centrifugation and was leached by an acid in order to get pure silicon flakes. Then silicon flakes were melted to make a silicon ingot using an induction furnace. The purities of the silicon flakes and silicon ingot were enhanced significantly compared to those of the raw materials of silicon and aluminum. The silicon ingot made of 4N aluminum and 2N silicon showed the lowest impurities.