• 제목/요약/키워드: ratio of response spectrum

Search Result 146, Processing Time 0.029 seconds

Structural safety redundancy-based design method for structure with viscous dampers

  • Hao, Linfei;Zhang, Ruifu
    • Structural Engineering and Mechanics
    • /
    • v.59 no.5
    • /
    • pp.821-840
    • /
    • 2016
  • A simple design process is proposed for supplemental viscous dampers based on structural safety redundancy. In this process, the safety redundancy of the primary structure without a damper is assessed by the capacity and response spectra. The required damping ratio that should be provided by the supplemental dampers is estimated by taking the structural safety redundancy as a design target. The arrangement of dampers is determined according to the drift distribution obtained by performing pushover analysis. A benchmark model is used to illustrate and verify the validity of this design process. The results show that the structural safety redundancy of the structure provided by the viscous dampers increases to approximately twice that of the structure without a damper and is close to the design target. Compared with the existing design methods, the proposed process can estimate the elastic-plastic response of a structure more easily by using static calculation, and determine the required damping ratio more directly without iterative calculation or graphical process. It can be concluded that the proposed process is simple and effective.

An Analysis of Response Spectrums of Earthquakes of Korean Peninsula in the First Half of 2000 (2000년도 상반기 한반도 발생지진들의 응답 스펙트럼 분석)

  • 이전희
    • Proceedings of the Earthquake Engineering Society of Korea Conference
    • /
    • 2000.10a
    • /
    • pp.66-72
    • /
    • 2000
  • We have scanned the several seismic traces of earthquakes and blasts observed from the digital new type seismograph instruments of KMA from Jan. 2000 to Aug. 2000. From these data, good quality data which have high signal/noise ratio were selected and they were transformed into ascii data from binary data(mini-seed format). The hypo71 program and P-S was applied in order to determine the location of epicenter, origin time and the magnitude. From these data, the 18 earthquakes and 3 blasts, 207 seismic records consist of 359 directional components were calculated. Using theses ground acceleration data, acceleration, velocity, and displacement response spectrums of the structures were calculated and they could be represented in a picture by the form of tripartite response spectrum. In the result, response spectrums of the 359 directional components of the above seismic data records were obtained respectively.

  • PDF

Wavelet-transform-based damping identification of a super-tall building under strong wind loads

  • Xu, An;Wu, Jiurong;Zhao, Ruohong
    • Wind and Structures
    • /
    • v.19 no.4
    • /
    • pp.353-370
    • /
    • 2014
  • A new method is proposed in this study for estimating the damping ratio of a super tall building under strong wind loads with short-time measured acceleration signals. This method incorporates two main steps. Firstly, the power spectral density of wind-induced acceleration response is obtained by the wavelet transform, then the dynamic characteristics including the natural frequency and damping ratio for the first vibration mode are estimated by a nonlinear regression analysis on the power spectral density. A numerical simulation illustrated that the damping ratios identified by the wavelet spectrum are superior in precision and stability to those values obtained from Welch's periodogram spectrum. To verify the efficiency of the proposed method, wind-induced acceleration responses of the Guangzhou West Tower (GZWT) measured in the field during Typhoon Usagi, which affected this building on September 22, 2013, were used. The damping ratios identified varied from 0.38% to 0.61% in direction 1 and from 0.22% to 0.59% in direction 2. This information is expected to be of considerable interest and practical use for engineers and researchers involved in the wind-resistant design of super-tall buildings.

Elastic floor response spectra of nonlinear frame structures subjected to forward-directivity pulses of near-fault records

  • Kanee, Ali Reza Taghavee;Kani, Iradj Mahmood Zadeh;Noorzad, Assadollah
    • Earthquakes and Structures
    • /
    • v.5 no.1
    • /
    • pp.49-65
    • /
    • 2013
  • This article presents the statistical characteristics of elastic floor acceleration spectra that represent the peak response demand of non-structural components attached to a nonlinear supporting frame. For this purpose, a set of stiff and flexible general moment resisting frames with periods of 0.3-3.6 sec. are analyzed using forty-nine near-field strong ground motion records. Peak accelerations are derived for each single degree of freedom non-structural component, supported by the above mentioned frames, through a direct-integration time-history analysis. These accelerations are obtained by Floor Acceleration Response Spectrum (FARS) method. They are statistically analyzed in the next step to achieve a better understanding of their height-wise distributions. The factors that affect FARS values are found in the relevant state of the art. Here, they are summarized to evaluate the amplification and/or reduction of FARS values especially when the supporting structures undergo inelastic behavior. The properties of FARS values are studied in three regions: long-period, fundamental-period and short-period. Maximum elastic acceleration response of non-structural component, mounted on inelastic frames, depends on the following factors: inelasticity intensity and modal periods of supporting structure; natural period, damping ratio and location of non-structural component. The FARS values, corresponded to the modal periods of supporting structure, are strongly reduced beyond elastic domain. However, they could be amplified in the transferring period domain between the mentioned modal periods. In the next step, the amplification and/or reduction of FARS values, caused by inelastic behavior of supporting structure, are calculated. A parameter called the response acceleration reduction factor ($R_{acc}$), has been previously used for far-field earthquakes. The feasibility of extending this parameter for near-field motions is focused here, suggested repeatedly in the relevant sources. The nonlinearity of supporting structure is included in ($R_{acc}$) for better estimation of maximum non-structural component absolute acceleration demand, which is ordinarily neglected in the seismic design provisions.

Reliability of Nonlinear Direct Spectrum Method with Mixed Building Structures (복합구조물에 대한 비선형 직접스펙트럼법의 신뢰성)

  • 강병두;김재웅
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.7 no.2
    • /
    • pp.75-84
    • /
    • 2003
  • Most structures are expected to deform beyond the limit of linearly elastic behavior when subjected to strong ground motion. Seismic evaluation of structure requires an estimation of the structural performance in terms of displacement demand imposed by earthquakes on the structure. The nonlinear response history analysis(NRHA) among various nonlinear analysis methods is the most accurate to compute seismic performance of structures, but it is time-consuming and necessitate more efforts. The nonlinear approximate methods, which is more practical and reliable tools for predicting seismic behavior of structures, are extensively studied. Among them, the capacity spectrum method(CSM) is conceptually simple, but the iterative procedure is time-consuming and may sometimes lead to no solution or multiple solutions. This paper considers a nonlinear direct spectrum method(NDSM) to evaluate seismic performance of mixed building structures without iterative computations, given dynamic property T from stiffness skeleton curve and nonlinear pseudo acceleration $A_{y}$/g and/or ductility ratio $\mu$ from response spectrum. The nonlinear response history analysis has been performed and analyzed with various earthquakes for estimation of reliability and practicality of NDSM with mixed building structures.

A study of dynamic responses of incorporating damaged materials and structures

  • Zhang, Wohua;Chen, Yunmin;Jin, Yi
    • Structural Engineering and Mechanics
    • /
    • v.10 no.2
    • /
    • pp.139-156
    • /
    • 2000
  • This paper concerns the development of a computational model for the damage evolution of engineering materials under dynamic loading. Two models describing the anisotropic damage evolution of a material are presented; the first is based on a power function of the effective equivalent stress and the second on the damage strain energy release rate. The methods for computing the damage accumulated in structural components and their implementation in a finite element programme are presented together with some numerical results. The dynamic response of a damaged structural component and the dynamic behaviour of a damaged material have been studied numerically. This study shows that the frequency spectrum of a damaged structure is down-shifted, while the damping ratio of damaged materials becomes higher, the amplitude of the response significantly increases and the resonance ensuing from the damage growth still occurs in a damaged structure.

The Engineering Characteristics of Seismicity of Korean Peninsula in 2000 (2000년도 한반도 지진활동의 공학적 특성)

  • 이전희
    • Proceedings of the Earthquake Engineering Society of Korea Conference
    • /
    • 2001.04a
    • /
    • pp.81-90
    • /
    • 2001
  • Several seismic traces of earthquakes observed from the digital new type seismograph instruments of KMA in 2000 were scanned. From these, good quality data which have high signal/noise ratio were selected and they were transformed into ascii data from binary data(min-seed format). The hypo71 program and P-S was applied in order to determine the location of epicenter, origin time and the magnitude. From these data, the 29 earthquakes, 358 seismic records consist of 587 directional components were calculated. Using these, ground acceleration data, acceleration, velocity, and displacemnet response spectrums of the structures were calculated and they could be represented in a picture by the form of tripartite response spectrum. In the result, response spectrums of the 587 directional components of the above seismic data records were obtained respectively.

  • PDF

Effects of ground motion scaling on nonlinear higher mode building response

  • Wood, R.L.;Hutchinson, T.C.
    • Earthquakes and Structures
    • /
    • v.3 no.6
    • /
    • pp.869-887
    • /
    • 2012
  • Ground motion scaling techniques are actively debated in the earthquake engineering community. Considerations such as what amplitude, over what period range and to what target spectrum are amongst the questions of practical importance. In this paper, the effect of various ground motion scaling approaches are explored using three reinforced concrete prototypical building models of 8, 12 and 20 stories designed to respond nonlinearly under a design level earthquake event in the seismically active Southern California region. Twenty-one recorded earthquake motions are selected using a probabilistic seismic hazard analysis and subsequently scaled using four different strategies. These motions are subsequently compared to spectrally compatible motions. The nonlinear response of a planar frameidealized building is evaluated in terms of plasticity distribution, floor level acceleration and uncorrelated acceleration amplification ratio distributions; and interstory drift distributions. The most pronounced response variability observed in association with the scaling method is the extent of higher mode participation in the nonlinear demands.

Performance Evaluation of Wind Response Control of High-Rise Buildings by Damping and Stiffness of Outrigger Damper System (아웃리거 댐퍼시스템의 감쇠와 강성에 따른 고층 건물 풍응답 제어 성능 평가)

  • Park, Kwang-Seob;Kim, Yun-Tae
    • Journal of Korean Association for Spatial Structures
    • /
    • v.18 no.4
    • /
    • pp.41-48
    • /
    • 2018
  • Recently, the concept of an outrigger damper system with a damper added to the existing outrigger system has been developed and applied for dynamic response control of high-rise buildings. However, the study on the structural characteristics and design method of Outrigger damper system is in the early stages. In this study, a 50 story high - rise building was designed and an outrigger damper system with viscoelastic damper was applied for wind response control. The time history analysis was performed by using the kaimal spectrum to create an artificial wind load for a total of 1,000 seconds at 0.1 second intervals. Analysis of the top horizontal maximum displacement response and acceleration response shows that outrigger damper systems are up to 28.33% and 49.26% more effective than conventional outrigger systems, respectively. Also, it is confirmed that the increase of damping ratio of dampers is effective for dynamic response control. However, since increasing the damping capacity increases the economic burden, it is necessary to select the appropriate stiffness and damping value of the outrigger damper system.

Investigation of Dynamic Characteristcs Uninterruptible Power Supply System (UPS) Using Shaking Table Tests (무정전전원장치(UPS)의 진동대 실험 및 동적특성 분석)

  • Lee, Seung-Jae;Kim, Joo-Young;Choi, Kyoung-Kyu
    • Journal of the Architectural Institute of Korea Structure & Construction
    • /
    • v.35 no.11
    • /
    • pp.129-136
    • /
    • 2019
  • Non-structural elements are vulnerable to earthquake ground motion. In this study, an experimental study for the electrical non-structural element was performed using tri-axial shaking table tests. A 100kVA UPS(Uninterruptible Power Supply system) was used as the test specimen. The test specimen was anchored to the concrete slab using the conventional installation detail. The input acceleration were generated in accordance with ICC-ES AC156 code. Scale factors of the input acceleration with respect to the required response spectrum defined in ICC-ES AC156 were from 25% to 600%. Based on the test results, damage and dynamic characteristics of UPS were evaluated and analyzed including natural frequency, damping ratio, acceleration time history response, dynamic amplification factor and relative displacement.