• 제목/요약/키워드: ratio of alloy

검색결과 756건 처리시간 0.031초

Load Ratio 해석에 의한 Al 5083 알루미늄합금 용접부의 J-R곡선 평가 (Evaluation on J-R Curve of 5083 aluminum Alloy Weldment by Load Ratio analysis)

  • 윤한기;김연겸;우대호
    • 대한용접접합학회:학술대회논문집
    • /
    • 대한용접접합학회 1997년도 특별강연 및 춘계학술발표 개요집
    • /
    • pp.91-98
    • /
    • 1997
  • This research is to evaluate of the J-R curve characteristic in 5083 aluminum alloy weldment by utilizing the load ratio analysis. This analysis method can be evaluated the J-R curve only with load-displacement curve without any particular precision instrument equipment in CT specimen. For validity, the results of the load ratio analysis are compared with the those of the J-R curve, which are obtained by the ASTM standard unloading compliance method. The calculated crack length of the load ratio analysis is well appropriate that the measured final crack length. And the J-R curve slope estimated by the load ratio analysis is slightly smaller than that by the ASTM unloading compliance method.

  • PDF

치과 CAD/CAM 가공용 합금블럭 제조 및 특성 관찰 (A manufacturing process and characteristic observation of alloy blocks for dental CAD/CAM system)

  • 김치영
    • 대한치과기공학회지
    • /
    • 제40권3호
    • /
    • pp.125-131
    • /
    • 2018
  • Purpose: Automatic dental prosthesis manufacturing process was accelerated by the spread of dental CAD / CAM system. The CAD / CAM system with milling alloys were needed supplement. So, sintered alloy blocks were introduced. In this study, we want to study sintered alloy block. And to evaluate the alloy block manufacture and alloy properties. Methods: The alloy powders were prepared by high pressure water dispersion method. The sintered alloy blocks were prepared by low temperature pressing method. Their components observation were EDX, and the alloy structure was observed by XRD. Results: Co-Cr alloy powders were observed to have a circle shape with an average diameter of about $100{\mu}m$ and a Ni-Cr alloy powder had a circle shape with an average diameter of about $50{\mu}m$. The Co-Cr alloy block is composed of Co (34.62 wt%), Cr (17.33 wt%), Mo (2.98 wt%), Si (0.36 wt%) and C (44.17 wt%). The Ni-Cr alloy powder was composed of Ni (40.29 wt%), Cr (19.37 wt%), Mo (3.53 wt%), Si (0.52 wt%) and C (33.18 wt%). The peak of the Co and CoCr peaks were observed in the CoCr alloy body by the means of XRD study. Cr2Ni3 of the peak was observed in the Ni-Cr alloy material. Conclusion : As a result, the following conclusions were obtained. 1. Prepared by high-pressure water-law Co-Cr alloy powder has an average diameter $100{\mu}m$, Ni-Cr alloy powder was found to have the form of sphere having an average diameter $50{\mu}m$. 2. Co-Cr alloy and Ni-Cr alloy block produced by low-temperature processing showed a certain ratio. 3. In the XRD study, Co phase appeared in Co-Cr alloy block after sintering. and Cr2Ni3 phase appeared in Ni-Cr alloy block after sintering.

비대칭 압연 패스 회수에 따른 AA1050 Al 판재의 집합조직과 소성변형비 변화 (Texture and Plastic Strain Ratio Changes with the Number of Passes of Asymmetric Rolling in AA1050 Al Alloy Sheet)

  • 남수권;정해봉;김인수
    • 소성∙가공
    • /
    • 제19권8호
    • /
    • pp.502-507
    • /
    • 2010
  • The physical and mechanical properties and formability of sheet metals depend on preferred crystallographic orientations (texture). In this research work, the texture development and formability (plastic strain ratios) of AA1050 Al alloy sheets after 3 and 10 passes of asymmetric rolling and subsequent heat treatment were investigated. The plastic strain ratios of 10 passes asymmetrically rolled and subsequent heat treated samples are 1.3 times higher than those of the initial AA1050 Al alloy sheets. The ${\Delta}r$ of 10 passes of asymmetrically rolled and subsequent heat treated samples is 1/30 times lower than those of the initial AA1050 Al alloy sheets. The plastic strain ratios of 10 passes of asymmetrically rolled and subsequent heat treated Al sheets are higher than those of 3 passes ones. These results could be attributed to the formation of $\gamma$-fiber, ND//<111>, and the other texture components by means of asymmetric rolling in Al sheets.

Finite-element analysis and design of aluminum alloy RHSs and SHSs with through-openings in bending

  • Ran Feng;Tao Yang;Zhenming Chen;Krishanu Roy;Boshan Chen;James B.P. Lim
    • Steel and Composite Structures
    • /
    • 제46권3호
    • /
    • pp.353-366
    • /
    • 2023
  • This paper presents a finite-element analysis (FEA) of aluminum alloy rectangular hollow sections (RHSs) and square hollow sections (SHSs) with circular through-openings under three-point and four-point bending. First, a finite-element model (FEM) was developed and validated against the corresponding test results available in the literature. Next, using the validated FE models, a parametric study comprising 180 FE models was conducted. The cross-section width-to-thickness ratio (b/t) ranged from 2 to 5, the hole size ratio (d/h) ranged from 0.2 to 0.8 and the quantity of holes (n) ranged from 2 to 6, respectively. Third, results obtained from laboratory test and FEA were compared with current design strengths calculated in accordance with the North American Specifications (NAS), the modified direct strength method (DSM) and the modified Continuous strength method (CSM). The comparison shows that the modified CSM are conservative by 15% on average for aluminum alloy RHSs and SHSs with circular through-openings subject to bending. Finally, a new design equation is proposed based on the modified CSM after being validated with results obtained from laboratory test and FEA. The proposed design equation can provide accurate predictions of flexural capacities for aluminum alloy RHSs and SHSs with circular through-openings.

고온 프레스법에 의한 TiNi/Al2024 복합재료의 제조 및 기계적 특성평가 (Fabrication and Mechanical Properties of TiNi/Al2024 Composites by Hot-Press Method)

  • 손용규;배동수;박영철;이규창
    • 소성∙가공
    • /
    • 제18권1호
    • /
    • pp.45-51
    • /
    • 2009
  • Shape memory alloy has been used to improve the tensile strength of composite by the occurrence of compressive residual stress in matrix using its shape memory effect. In order to fabricate shape memory alloy composite, TiNi alloy fiber and Al2024 sheets were used as reinforcing material and matrix, respectively. In this study, TiNi/Al2024 shape memory alloy composite was made by using hot press method. In order to investigate bonding condition between TiNi reinforcement and Al matrix, the micro-structure of interface was observed by using optical microscope and diffusion layer of interface was measured by using Electron Probe Micro Analyser. And the mechanical properties of composite with three parameters(volume fraction of fiber, cold rolling amount and test temperature) were obtained by tensile test. The most optimum bonding condition for fabrication the TiNi/Al2024 composite material was obtained as holding for 30min. under the pressure of 60MPa at 793K. The strength of composite material increased considerably with the volume fraction of fiber up to 7.0%. And the tensile strength of this composite increased with the reduction ratio and it also depends on the volume fraction of fiber.

용탕압출법에 의한 Al-Cu 합금 선재의 제조에 관한 연구 (A Study on Fabrication of Al-Cu alloy bar by Melt-extrusion Process)

  • 주대헌;이병수;김명호
    • 한국주조공학회지
    • /
    • 제24권6호
    • /
    • pp.331-339
    • /
    • 2004
  • Melt-extrusion process, a metallic melt poured and solidified up to semisolid state in the container can be directly extruded through the die exit to form a product of bar shape without other intermediate processes. In this study, the fabrication characteristics of the process were evaluated with various process parameters, such as preheating temperature of extrusion dies, extrusion temperature and extrusion ratio. AI-Cu alloys were successfully extruded after squeezing out of liquid during melt-extrusion with smaller force compared to the solid extrusion. Soundly AI-Cu alloy bar was fabricated at the preheating temperature of $500{\sim}520^{\circ}C$. The range of extrusion temperature for soundly melt-extruded AI-Cu alloy bar was increased with increasing extrusion ratio. Mechanical properties of melt-extruded AI-Cu alloy bars were found change with Cu content of the melt-extruded bars due to the occurrence of segregation. The various extrusion temperature yielded equiaxed structure with a grains size about 200 ${\mu}m$.

Milling and Particulate Characteristics of Al Alloy-Al2O3 Powder Mixtures for Reaction-Bonded Al2O3(RBAO) Process

  • Lee, Hyun-Kwuon
    • 한국재료학회지
    • /
    • 제23권10호
    • /
    • pp.574-579
    • /
    • 2013
  • The milling and particulate characteristics of Al alloy-$Al_2O_3$ powder mixtures for a reaction-bonded $Al_2O_3$ (RBAO) process were studied. A commercially available prealloyed Al powder with Zn, Mg, Cu and Cr alloying elements (7475 series) was mixed with a calcined sinter-active $Al_2O_3$ powder and then milled in centrifugal milling equipment for ~48 hrs. The Al alloy-$Al_2O_3$ powder mixtures after milling were characterized and evaluated in various ways to reveal their particulate characteristics during milling. The milling efficiency of the Al alloy increased with a longer milling time. Comminution of the Al alloy particles started with its elongation, showing a high aspect ratio. With a longer milling time, the elongated Al alloy particle changed in terms of its shape and size, becoming equiaxially fine particles. Regardless of the milling efficiency of the Al alloy particles, all of the Al alloy particles repeatedly experienced strong plastic deformation during milling, giving rise to higher density of surface defects, such as microcracks, and leading to higher residual microstress within the Al alloy particles. The chemical reactions, oxidation behavior and hydration behavior of the Al alloy particles and the hydrolysis characteristics of their reaction with the environment were also observed during the milling process and during the subsequent powder handling steps.

Al-Cu-Mn 주조합금의 피로성질에 미치는 Cd 첨가의 영향 (Effect of Cd addition on the Fatigue Properties of Al-Cu-Mn cast alloy)

  • 김경현;이병훈;김인배
    • 한국재료학회지
    • /
    • 제11권4호
    • /
    • pp.300-304
    • /
    • 2001
  • Al-Cu-Mn 주조합금의 피로성질에 미치는 Cd 첨가의 영향을 저주기 및 고주기 피로시험을 통하여 조사하였다. Cd 첨가량이 증가함에 따라 피로수명이 증가하였으며, 인장강도도 증가하였다. 고주기 피로시험결과 피로강도는 115MPa이었으며 피로비는 0.31이었다. 피로시험 결과 균열이 표면에서 발생하여 입계를 따라 전파되었는데 이러한 입계파괴는 입계를 따라 존재하는 무석출대의 영향으로 생각된다. 인장강도값은 Cd이 첨가되지 않았을 경우 330MPa이었으나 0.15%의 Cd이 첨가됨으로써 401MPa 까지 증가되었다.

  • PDF

Filling of Cu-Al Alloy Into Nanoscale Trench with High Aspect Ratio by Cyclic Metal Organic Chemical Vapor Deposition

  • Moon, H.K.;Lee, S.J.;Lee, J.H.;Yoon, J.;Kim, H.;Lee, N.E.
    • 한국진공학회:학술대회논문집
    • /
    • 한국진공학회 2012년도 제42회 동계 정기 학술대회 초록집
    • /
    • pp.370-370
    • /
    • 2012
  • Feature size of Cu interconnects keep shrinking into several tens of nanometer level. For this reason, the Cu interconnects face challenging issues such as increase of electro-migration, line-width dependent electrical resistivity increase, and gap-filling difficulty in high aspect ratio structures. As the thickness of the Cu film decreases below 30 nm, the electrical resistivity is not any more constant, but rather exponential. Research on alloying with other elements have been started to inhibit such escalation in the electrical resistivity. A faint trace of Al added in Cu film by sputtering was reported to contribute to suppression of the increase of the electrical resistivity. From an industrial point of view, we introduced cyclic metal organic chemical vapor deposition (MOCVD) in order to control Al concentration in the Cu film more easily by controlling the delivery time ratio of Cu and Al precursors. The amount of alloying element could be lowered at level of below 1 at%. Process of the alloy formation was applied into gap-filling to evaluate the performance of the gap-filling. Voidless gap-filling even into high aspect ratio trenches was achieved. In-depth analysis will be discussed in detail.

  • PDF

Relationship Between AC and DC Magnetic Properties of an Iron-Based Amorphous Alloy for High Frequency Applications

  • Choi, Y.S.;Noh, T.H.;Lim, S.H.
    • Journal of Magnetics
    • /
    • 제1권1호
    • /
    • pp.24-30
    • /
    • 1996
  • The relationship between effective permeability and the remanence ratio of an Fe-based amorphous alloy (Metglas 2605S3A) is investigated over a wide frequency range, in an effort to understand magnetization behavior of the alloy. In the frequency range from 1 to 200 kHz, the permeability is maximum at the remanence ratio of 0.4-0.5 and, at frequencies over 500 kHz, the correlation with negative coefficients emerges indicating that the permeability decreases with the remanent ratio, except for the ribbon coated with an insulating layer of MgO which exhibits both high values of the effective permeability and remanence ratio. It is considered from the correlation results that the boundary at which the dominant magnetization mechanism changes from domain wall motion to spin rotation is near 500 kHz. The core loss is also investigated as a function of annealing time when the samples are annealed at a fixed temperature of $435^{\circ}C$. The core loss in most cases decreases with the annealing time, the degree of the loss may consist of the hysteresis loss and anomalous eddy current loss. The two loss components are considered to be of similar magnitudes at low frequencies while, at high frequencies, the dominant contribution to the total loss is the anomalous loss.

  • PDF