• Title/Summary/Keyword: rate-based

Search Result 23,687, Processing Time 0.049 seconds

Corrosion Behavior of Hastelloy C-276 for Carbon-anode-based Oxide Reduction Applications

  • Jeon, Min Ku;Kim, Sung-Wook;Choi, Eun-Young
    • Journal of Nuclear Fuel Cycle and Waste Technology(JNFCWT)
    • /
    • v.18 no.3
    • /
    • pp.383-393
    • /
    • 2020
  • The corrosion behavior of Hastelloy C-276 was investigated to identify its applicability for carbon-anode-based oxide reduction (OR), in which Cl2 and O2 are simultaneously evolved at the anode. Under a 30 mL·min-1 Cl2 + 170 mL·min-1 Ar flow, the corrosion rate was less than 1 g·m-2·h-1 up to 500℃, whereas the rate increased exponentially from 500 to 700℃. The effects of the Cl2-O2 composition on the corrosion rate at flow rates of 30 mL·min-1 Cl2, 20 mL·min-1 Cl2 + 10 mL·min-1 O2, and 10 mL·min-1 Cl2 + 20 mL·min-1 O2 with a constant 170 mL·min-1 Ar flow rate at 600℃ was analyzed. Based on the data from an 8 h reaction, the fastest corrosion rate was observed for the 20 mL·min-1 Cl2 + 10 mL·min-1 O2 case, followed by 30 mL·min-1 Cl2 and 10 mL·min-1 Cl2 + 20 mL·min-1 O2. The effects of the chlorine flow rate on the corrosion rate were negligible within the 5-30 mL·min-1 range. A surface morphology analysis revealed the formation of vertical scratches in specimens that reacted under the Cl2-O2 mixed gas condition.

Deep Learning-based Real-time Heart Rate Measurement System Using Mobile Facial Videos (딥러닝 기반의 모바일 얼굴 영상을 이용한 실시간 심박수 측정 시스템)

  • Ji, Yerim;Lim, Seoyeon;Park, Soyeon;Kim, Sangha;Dong, Suh-Yeon
    • Journal of Korea Multimedia Society
    • /
    • v.24 no.11
    • /
    • pp.1481-1491
    • /
    • 2021
  • Since most biosignals rely on contact-based measurement, there is still a problem in that it is hard to provide convenience to users by applying them to daily life. In this paper, we present a mobile application for estimating heart rate based on a deep learning model. The proposed application measures heart rate by capturing real-time face images in a non-contact manner. We trained a three-dimensional convolutional neural network to predict photoplethysmography (PPG) from face images. The face images used for training were taken in various movements and situations. To evaluate the performance of the proposed system, we used a pulse oximeter to measure a ground truth PPG. As a result, the deviation of the calculated root means square error between the heart rate from remote PPG measured by the proposed system and the heart rate from the ground truth was about 1.14, showing no significant difference. Our findings suggest that heart rate measurement by mobile applications is accurate enough to help manage health during daily life.

A Study on the Efficient Concatenated Code on the Diffusion-based Molecular Communication Channel (확산기반 분자통신 채널에 효율적인 직렬 연결 부호에 관한 연구)

  • Cheong, Ho-Young
    • The Journal of Korea Institute of Information, Electronics, and Communication Technology
    • /
    • v.15 no.4
    • /
    • pp.230-236
    • /
    • 2022
  • In this paper, we propose an efficient concatenated code for both random and ISI errors on diffusion-based molecular communication channels. The proposed concatenated code was constructed by combining the ISI-mitigating code designed for ISI mitigation and the ISI-Hamming code strong against random errors, and the BER(bit error rate) performance was analyzed through simulation. In the case of the above M=1,200 channel environment, it was found that the error rate performance of the concatenated code follows the error rate performance of the ISI-mitigating code, which is strong against ISI, and follows the error rate performance of the ISI-Hamming code, which is strong against random errors, in the channel environment below M=600. In M=600~1,200, the concatenated code shows the best error rate performance among those of three codes, which is analyzed because it can correct both random errors and errors caused by ISI. In the following cases of below M=800, it can be seen that the error rate of the concatenated code and the ISI-mitigating code shows an error rate difference of about 1.0×10-1 on average.

Motion Linearity-based Frame Rate Up Conversion Method (선형 움직임 기반 프레임률 향상 기법)

  • Kim, Donghyung
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.18 no.7
    • /
    • pp.734-740
    • /
    • 2017
  • A frame rate up-conversion scheme is needed when moving pictures with a low frame rate is played on appliances with a high frame rate. Frame rate up-conversion methods interpolate the frame with two consecutive frames of the original source. This can be divided into the frame repetition method and motion estimation-based the frame interpolation one. Frame repetition has very low complexity, but it can yield jerky artifacts. The interpolation method based on a motion estimation and compensation can be divided into pixel or block interpolation methods. In the case of pixel interpolation, the interpolated frame was classified into four areas, which were interpolated using different methods. The block interpolation method has relatively low complexity, but it can yield blocking artifacts. The proposed method is the frame rate up-conversion method based on a block motion estimation and compensation using the linearity of motion. This method uses two previous frames and one next frame for motion estimation and compensation. The simulation results show that the proposed algorithm effectively enhances the objective quality, particularly in a high resolution image. In addition, the proposed method has similar or higher subjective quality than other conventional approaches.

Evaluation of the Radon Contribution Rate in Apartments through Evaluation of the Radon Exhalation Rate from Building Materials (건축자재 라돈 방출률 평가를 통한 공동주택 내 라돈 기여율 평가)

  • Hong, Hyungjin;Choi, Jiwon;Yoon, Sungwon;Kim, Heechun;Lee, Cheolmin
    • Journal of Environmental Health Sciences
    • /
    • v.47 no.5
    • /
    • pp.425-431
    • /
    • 2021
  • Background: This study evaluated the radon contribution rate through an evaluation of the exhalation rate of radon from building materials. Objectives: This study compared and evaluated the computation of the radon contribution rate based on each different exhalation rate in a building. Methods: The six demonstration houses that are the subject of this study are wall structures or Rahmen structures, and include demonstration houses similar to general residential environments and non-finishing houses with some walls exposed. Results: The highest exhalation rate was found at 62.98 Bq/m2 per day from the non-finishing floor, and the second highest exhalation rate was from stone materials at 58.76 Bq/m2 per day. Based on this result, investigating the contribution rate of building materials derived from building materials among indoor radon concentrations, house three was the highest at 81.7%, and house one was confirmed to be 33.96%. Conclusions: It can be judged that the effect of exposed concrete and stone is high, and that it is possible to reduce radon emitted from indoor building structures by controlling the indoor materials.

Bivariate ROC Curve and Optimal Classification Function

  • Hong, C.S.;Jeong, J.A.
    • Communications for Statistical Applications and Methods
    • /
    • v.19 no.4
    • /
    • pp.629-638
    • /
    • 2012
  • We propose some methods to obtain optimal thresholds and classification functions by using various cutoff criterion based on the bivariate ROC curve that represents bivariate cumulative distribution functions. The false positive rate and false negative rate are calculated with these classification functions for bivariate normal distributions.

OPERATION OF UNRELIABLE SYSTEM [CASE: DRAGLINE]

  • Murthy, D.N.P.
    • Proceedings of the Korean Reliability Society Conference
    • /
    • 2004.04a
    • /
    • pp.15-25
    • /
    • 2004
  • Inherent reliability depends on decisions made during design and manufacture. Reliability degrades with age and production rate (or usage level/intensity). System design based on some nominal production rate. Actual production rate can differ-depends on commercial considerations.(omitted)

  • PDF

Intelligent 2-DOF PID Control For Thermal Power Plant Using Immune Based Multiobjective

  • Kim, Dong-Hwa
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2003.10a
    • /
    • pp.1371-1376
    • /
    • 2003
  • In the thermal power plant, the main steam temperature is typically regulated by the fuel flow rate and the spray flow rate, and the reheater steam temperature is regulated by the gas recirculation flow rate. However, Strictly maintaining the steam temperature can be difficult due to heating value variation to the fuel source, time delay changes in the main steam temperature, the change of the dynamic characteristics in the reheater. Up to the present time, PID Controller has been used to operate this system. However, it is very difficult to achieve an optimal PID gain with no experience, since the gain of the PID controller has to be manually tuned by trial and error. This paper focuses on tuning of the 2-DOF PID Controller on the DCS for steam temperature control using immune based multiobjective approach. The stable range of a 2-DOF parameter for only this system could be found for the start-up procedure and this parameter could be used for the tuning problem. Therefore tuning technique of multiobjective based on immune network algorithms in this paper can be used effectively in tuning 2-DOF PID controllers.

  • PDF

Intelligent Control of Power Plant Using Immune Algorithm Based Multiobjective Fuzzy Optimization

  • Kim, Dong-Hwa
    • Proceedings of the Korean Institute of Intelligent Systems Conference
    • /
    • 2003.09a
    • /
    • pp.525-530
    • /
    • 2003
  • This paper focuses on design of nonlinear power plant controller using immune based multiobjective fuzzy approach. The thermal power plant is typically regulated by the fuel flow rate, the spray flow rate, and the gas recirculation flow rate. However, Strictly maintaining the steam temperature can be difficult due to heating value variation to the fuel source, time delay changes in the main steam temperature. the change of the dynamic characteristics in the steam-turbine system. Up to the present time, PID Controller has been used to operate this system. However, it is very difficult to achieve an optimal PID gain with no experience, since the gain of the PID controller has to be manually tuned by trial and error. These parameters tuned by multiobjective based on immune network algorithms could be used for the tuning of nonlinear power plant.

  • PDF

System-Level Performance of Spread Spectrum-Based Add-on Service Overlaid onto the Existing Terrestrial Digital Multimedia Broadcast Band

  • Yoon, Seokhyun;Lim, Bo-Mi;Lee, Yong Tae
    • ETRI Journal
    • /
    • v.34 no.4
    • /
    • pp.492-502
    • /
    • 2012
  • We consider an overlaid broadcast service, where a spread spectrum (SS)-based broadcast signal is overlaid onto the existing terrestrial Digital Multimedia Broadcasting (T-DMB) band. The system is similar to the augmented data transmission in the ATSC DTV, for which it was investigated mostly in terms of link level performance, such as bit error rate. Our focus in this paper is on the system-level performances. More specifically, utilizing both a large scale path loss and a small scale fading channel model, the primary objective is to explore the tradeoff between the coverage and the achievable rate of the overlaid service and, finally, to determine the achievable rate in the overlaid service for marginal coverage reduction in the existing broadcast service. The analytical and simulation results show that an SS-based add-on service of 10 kbps to 20 kbps can co-exist with the T-DMB service while resulting in only a marginal degradation in T-DMB coverage (for example, less than one percent reduction).