• Title/Summary/Keyword: rate of temperature rise

Search Result 359, Processing Time 0.027 seconds

Manufacture of Nano-Sized Ni-ferrite Powder from Waste Solution by Spray Pyrolysis Process (분무열분해 공정에 의한 폐액으로부터 니켈 페라이트 나노 분말 제조)

  • Yu Jae-Keun;Suh Sang-Kee;Kang Seong-Gu;Kim Jwa-Yeon;Park Si-Hyun;Park Yaung-Soo;Choi Jae-Ha;Sohn Jin-Gun
    • Resources Recycling
    • /
    • v.12 no.4
    • /
    • pp.20-29
    • /
    • 2003
  • In order to efficiently recycle the waste solution resulting from shadow mask processing, nano-sized Ni-ferrite powder was fab-ricated through spray pyrolysis process. The average particle size of the powder was below 100nm. In this study, the effects of the reaction temperature. the concentration of raw material solution and the injection speed of solution on the properties of powder were respectively investigated. As the reaction temperature increased from $800^{\circ}C$ to $1100^{\circ}C$, average particle size of the powder significantly Increased and power structure became more solid, whereat its specific surface area was greatly reduced. Formation rate and crystallization of($NiFe_2$$O_4$) phale increased along with the temperature rise. As the concentrations of iron and nickel components in wastere solution increased, particle size of the powder became larger, particle size distribution became more irregular, and specific surface area was reduced. Formation rate and crystallization of $NiFe_2$$O_4$ phase increased significantly along with the increase of the concentration of solution. As the inlet speed of solution increased, particle size of the powder became larger, particle size distribution became wider, specific surface area was reduced and powder structure became less solid. As the inlet speed of solution decreased, formation rate and crystallization of $NiFe_2$$O_4$ phase significantly increased.

Experimental Study of Cooling Performance Comparison of a 18650 Li-ion Unit Battery Module (Air Cooling vs. PCM-based Cooling) (18650 리튬-이온 단일 배터리 모듈의 냉각 성능 비교에 관한 실험적 연구(공기 냉각과 PCM 기반 냉각))

  • BAEK, SEOUNGSU;YU, SIWON;KIM, HAN-SANG
    • Transactions of the Korean hydrogen and new energy society
    • /
    • v.29 no.2
    • /
    • pp.212-218
    • /
    • 2018
  • Li-ion battery system is regarded as one of the most potent power sources for electrified power-trains. For the Li-ion battery system to be widely adopted in automotive applications, the performance, safety, and cycle life issues need to be properly addressed. These issues are closely related to the thermal management of battery system. Especially, the effective cooling module design is the core part for the novel battery thermal management system development. In this paper, an experimental approach was carried out as a basic part of comprehensive battery thermal management research. The main goal of this paper is to present a comparison of two cooling systems (air cooling and phase change material (PCM) based cooling) of the unit 18650 battery module. The temperature rise with different battery discharge rate (c-rate) was mainly investigated and analyzed for two types of battery cooling systems. It is expected that this study can properly contribute to providing basic insights into the design of robust battery thermal management system for vehicular applications.

Effects of Transcutaneous Auricular Vagus Nerve Stimulation on the Activity of Autonomic Nervous System and Postprandial Blood Glucose Levels (경피적 귀 미주신경 자극이 자율신경계의 활동 및 식후 혈당 변화에 미치는 영향)

  • Hana, Lee;Hyun, Kim;Doyong, Kim;Minjoo, Lee;Seungkwan, Cho;Han Sung, Kim
    • Journal of Biomedical Engineering Research
    • /
    • v.44 no.1
    • /
    • pp.33-40
    • /
    • 2023
  • Transcutaneous auricular vagus nerve stimulation (taVNS) is known to be effective in improving symptoms of numerous diseases such as depression and epilepsy by increasing vagus nerve activity through electrical stimulation. The purpose of this study is to investigate the effect of vagus nerve stimulation on the activity of autonomic nervous system and the changes in postprandial blood glucose levels. Seven healthy adults participated in a non-invasive transcutaneous auricular vagus nerve stimulation experiment. taVNS (25 Hz, 200 ㎲, biphasic pulse) was applied to the cymba concha (taVNS group) or the earlobe (Sham-taVNS group) of the left ear. As autonomic nervous system signals, skin conductance level, skin temperature, and heart rate were recorded during the application of taVNS. Postprandial blood glucose changes due to food intake were recorded at 5 min intervals for 25 minutes after taVNS or sham-taVNS. The taVNS showed a significantly lower skin conductance level than the shamtaVNS (p < 0.05). The increase rate of postprandial blood glucose was significantly lower in the taVNS than in the sham-taVNS (p < 0.05). These results showed that taVNS reduced the activity of the sympathetic nerve system and alleviated early rise in postprandial blood glucose. Although further studies in diabetic patients are needed, this study suggest that taVNS has a potential for clinical use to improve postprandial blood glucose.

A Case Study on the Effect of Hypobaric-Hypoxic Intermittent Training on the Blood Constituents and Average Heart rate of Professional Handicapped Cyclists

  • Kim, Sang Hoon;Song, Young Wha;Kim, Hong Rae;Heo, Seo Yoon;Kim, Yong Youn
    • Journal of International Academy of Physical Therapy Research
    • /
    • v.8 no.1
    • /
    • pp.1114-1121
    • /
    • 2017
  • The purpose of this study was to investigate the effects of hypobarichypoxic training program on competitive performance. This was done by observing their conditioning and measuring their blood constituents before and after a multi-staged intermittent training program, over 2 weeks. Three national handicapped cyclists were placed in a multi-leveled hypobaric-hypoxic (flat-4000 meter (m) high elevation) environment with consistent temperature and humidity ($23{\pm}2^{\circ}C$, $50{\pm}5%$) for 2 weeks. After the training, the blood constituents and average heart rate (HR) were measured and the following results were obtained. In all three athletes, there were no unique changes in red blood cell count, hemoglobin, and hematocrit, while there was a rise in the reticulocyte count. Observations of the difference in average HR during exercise at varying altitudes showed that athlete A had an average increase in the HR for the first 5 days at 2000 m. For athlete B, the comparison of the first and last training sessions at an altitude of 2000 m showed an HR increase of approximately 17%. For athlete C, there was a steady increase in the HR until day 7 of the training. As such, hypobaric-hypoxic training suggested that improvement of aerobic exercise performance in these athletes and it is recommended that there be a development for future training programs at high altitude, geared towards handicapped athletes of various disciplines.

Failure analysis of capacitor for sub-module in HVDC (HVDC 서브모듈용 커패시터의 고장 분석)

  • Kang, Feel-soon;Song, Sung-Geun
    • Journal of IKEEE
    • /
    • v.22 no.4
    • /
    • pp.941-947
    • /
    • 2018
  • In general, capacitors have a large influence on the life of the system due to frequent charging and discharging. In this paper, we analyze the cause of the core failure of high voltage, high current HVDC sub-module film capacitor and analyze the precautions of the capacitor design and manufacturing process. First, the cause of the fault, the failure mode, and the effect are analyzed through the FMEA of the capacitor. To quantitatively evaluate the causes and effects of faults that have the greatest effect on the failure of a capacitor, a fault tree for the capacitor is presented and the failure rate is analyzed according to the design parameters and the driving conditions. It is verified that the main cause of capacitor failure is the capacitance change, and it is necessary to minimize the temperature rise, corona occurrence, electrode expansion, and insulation distance decrease during capacitor design and manufacturing process in order to reduce the failure rate of the capacitor.

The effect of exit opening rate on exhaust gas pressure, temperature, and engine performance (배기 출구 개도율이 배기 압력과 온도 및 엔진 성능에 미치는 영향)

  • Kim, Cheol-Jeong;Choi, Byung-Chul;Park, Kweon-Ha
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.38 no.1
    • /
    • pp.15-22
    • /
    • 2014
  • Multiple devices have been installed to reduce exhaust emissions and to increase thermal efficiency. Those devices reduce the exhaust pipe opening area and increase the exhaust gas pressure. The pressure increase disturbs a gas flow and has a bad effect on the engine performance. However there is some study that NOx can be reduced with exhaust gas pressure increase. In this study an engine performance is tested with various opening ratios. The result shows that the fuel consumption rate is reduced in case of little amount of the pressure increase, and NOx is reduced with the pressure increase, while the concentration of the toxic exhaust gases are increased in the case of high back-pressure.

Reliability Estimation and Dynamic Deformation of Polymeric Material Using SHPB Technique and Probability Theory (SHPB 기법과 확률이론을 이용한 고분자재료의 동적거동특성 및 건전성 평가)

  • Lee, Ouk-Sub;Kim, Dong-Hyeok
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.32 no.9
    • /
    • pp.740-753
    • /
    • 2008
  • The conventional Split Hopkinson Pressure Bar (C-SHPB) technique with aluminum pressure bars to achieve a closer impedance match between the pressure bars and the specimen materials such as hot temperature degraded POM (Poly Oxy Methylene) and PP (Poly Propylene) to obtain more distinguishable experimental signals is used to obtain a dynamic behavior of material deformation under a high strain rate loading condition. An experimental modification with Pulse shaper is introduced to reduce the nonequilibrium on the dynamic material response during a short test period to increase the rise time of the incident pulse for two polymeric materials. For the dynamic stress strain curve obtained from SHPB experiment under high strain rate, the Johnson-Cook model is applied as a constitutive equation, and we verify the applicability of this constitutive equation to the probabilistic reliability estimation method. The methodology to estimate the reliability using the probabilistic method such as the FORM and the SORM has been proposed, after compose the limit state function using Johnson-Cook model. It is found that the failure probability estimated by using the SORM is more reliable than those of the FORM, and the failure probability increases with the increase of applied stress. Moreover, it is noted that the parameters of Johnson-Cook model such as A and n, and applied stress affect the failure probability more than the other random variables according to the sensitivity analysis.

Investigation of Physiological and Yield Responses to Temperature Increases in Northern-ecotype Garlic (Allium sativum L. ) 'Uiseong' in Temperature Gradient Tunnels (한지형 마늘 '의성'의 온도구배하우스내 온도상승에 따른 생육 및 생리장해 조사)

  • Byung-Hyuk Kim;Min-Seon Choi;Chun Hwan Kim;Minji Shin;Seong Eun Lee;Kyung Hwan Moon;Hyun-Hee Han
    • Korean Journal of Agricultural and Forest Meteorology
    • /
    • v.25 no.4
    • /
    • pp.276-283
    • /
    • 2023
  • Garlic (Allium sativum L.) is one of the most important vegetables used in various foods in Korea and many countries. The growth of garlic is influenced by various abiotic factors such as cultivation temperature, humidity, minimum temperature duration, and photoperiod. This study investigated the effects of increasing temperatures on the plant growth of the northern- ecotype garlic 'Uiseong' in a temperature gradient tunnel. As a result, temperature increase led to decreases in the bulb diameter, weight, and clove pieces of garlic. The rise of cultivation temperature increased the occurrence rate of incomplete bolting in the Northern-ecotype garlic 'Uiseong', resulting in decreases in productivity and a decrease in the yield of marketable garlic, indicating that temperature increases affect the development of garlic bulb formation. The findings of this study are expected to contribute as foundational data for understanding the growth responses of the northern-ecotype 'Uiseong' to increasing cultivation temperatures. The results of this study can be used to develop designing garlic growth models. In addition, the results of this study can improve understanding the interaction between increased temperature and garlic growth.

Changes in Heating Profiles of Apple Juice by Ohmic Heating (통전가열(Ohmic Heating) 처리조건에 따른 사과주스의 가열속도 변화)

  • Kim, Kyung-Tack;Choi, Hee-Don;Kim, Sung-Soo;Hong, Hee-Do
    • Applied Biological Chemistry
    • /
    • v.41 no.6
    • /
    • pp.431-436
    • /
    • 1998
  • The optimum ohmic heating condition of apple juice was investigated with model solution. The temperature rise of model solution was found to be $7.8,\;21.0,\;47.4^{\circ}C/min$ when the distances between electrodes were 29, 22, and 17mm, respectively. The heating rate increased proportionally with the numbers of electrode pairs, 1 to 3 and highly dependent on applied voltage. The heating rate was not affected by the frequencies ranged from 60 Hz to 60 KHz and the wave form of applied alternating electric current. The apple juices prepared by ohmic heating sterilization revealed similar physicochemical properties to that by commercial sterilization.

  • PDF

A Study on Experiments the Environmental Conditions and the Adaptation of the Human Body in the Vinyl House (Vinyl House 내의 환경조건과 인체적응에 관한 실험연구)

  • Shim, Bu-Ja
    • Journal of Preventive Medicine and Public Health
    • /
    • v.27 no.1 s.45
    • /
    • pp.59-73
    • /
    • 1994
  • The purpose of this study is to experiments the environmental conditions and the adaption of the human body in the vinyl house. The study was done in spring and winter and experimental clothes were used working clothes in the vinyl house. The results are as follows. 1. Environmental Conditions In the spring season, the indoor air temperature was $27.4{\pm}3.7^{\circ}C$ and the outdoor air temperature was $14.4{\pm}2.7^{\circ}C$. In the winter season, the indoor air temperature was $18.3{\pm}4.8^{\circ}C$ and the outdoor air temperature was $7.6{\pm}2.5^{\circ}C$ on the average. 2. Skin Temperature In the spring season, the mean skin temperatures indoor and outdoor were $33.81{\pm}0.7^{\circ}C\;and\;31.57{\pm}0.8^{\circ}C$ respectively, a difference of $2.24^{\circ}C$. In the winter season, they were $31.95{\pm}1.93^{\circ}C\;and\;29.86{\pm}0.55^{\circ}C$ respectively, a difference of $2.09^{\circ}C$. 3. Clothing Climate In the spring season, the temperature and humidity in the inner layer of clothing were $34.77{\pm}0.80^{\circ}C\;and\;70.75{\pm}1.65%$ indoor, $31.9{\pm}0.52^{\circ}C\;and\;51.9{\pm}3.70%$ outdoor respectively. In the winter season, those were $32.52{\pm}1.04^{\circ}C\;and\;64.65{\pm}3.68%$ indoor, $30.27{\pm}0.96^{\circ}C\;and\;45.07{\pm}2.68%$ outdoor respectively. 4. Physiological Factors Body temperature increased slightly and the pulse rate also rises, but blood pressure decreased a little with the rise of environmental temperature both in the spring and winter seasons. 5. Psychological Factors Thermal sensation in the spring season was expressed as 'slightly warm' or 'warm' indoor and as 'neutral' in the open air, while in the winter it was expressed as 'neutral' or 'slightly warm' outdoor the house and as 'cold' in the open air. Comfort sensation was characterized as 'uncomfortable' or 'slightly uncomfortable' indoor both in the spring and winter seasons, but in the open air it was characterized as 'comfortable' in the spring and as 'slightly uncomfortable' in the winter.

  • PDF