DOI QR코드

DOI QR Code

Effects of Transcutaneous Auricular Vagus Nerve Stimulation on the Activity of Autonomic Nervous System and Postprandial Blood Glucose Levels

경피적 귀 미주신경 자극이 자율신경계의 활동 및 식후 혈당 변화에 미치는 영향

  • Hana, Lee (Department of Biomedical Engineering, Yonsei University) ;
  • Hyun, Kim (Department of Biomedical Engineering, Yonsei University) ;
  • Doyong, Kim (Department of Biomedical Engineering, Yonsei University) ;
  • Minjoo, Lee (Department of Biomedical Engineering, Yonsei University) ;
  • Seungkwan, Cho (GFY Inc.) ;
  • Han Sung, Kim (Department of Biomedical Engineering, Yonsei University)
  • Received : 2023.01.16
  • Accepted : 2023.01.25
  • Published : 2023.02.28

Abstract

Transcutaneous auricular vagus nerve stimulation (taVNS) is known to be effective in improving symptoms of numerous diseases such as depression and epilepsy by increasing vagus nerve activity through electrical stimulation. The purpose of this study is to investigate the effect of vagus nerve stimulation on the activity of autonomic nervous system and the changes in postprandial blood glucose levels. Seven healthy adults participated in a non-invasive transcutaneous auricular vagus nerve stimulation experiment. taVNS (25 Hz, 200 ㎲, biphasic pulse) was applied to the cymba concha (taVNS group) or the earlobe (Sham-taVNS group) of the left ear. As autonomic nervous system signals, skin conductance level, skin temperature, and heart rate were recorded during the application of taVNS. Postprandial blood glucose changes due to food intake were recorded at 5 min intervals for 25 minutes after taVNS or sham-taVNS. The taVNS showed a significantly lower skin conductance level than the shamtaVNS (p < 0.05). The increase rate of postprandial blood glucose was significantly lower in the taVNS than in the sham-taVNS (p < 0.05). These results showed that taVNS reduced the activity of the sympathetic nerve system and alleviated early rise in postprandial blood glucose. Although further studies in diabetic patients are needed, this study suggest that taVNS has a potential for clinical use to improve postprandial blood glucose.

Keywords

Acknowledgement

이 성과는 정부(과학기술정보통신부)의 재원으로 한국연구재단의 지원을 받아 수행된 연구임(No. NRF-2021R1A2C2093828).

References

  1. De Couck M, Cserjesi R, Caers R, Zijlstra W, Widjaja D, Wolf N, Luminet O, Ellrich J, Gidron Y. Effects of short and prolonged transcutaneous vagus nerve stimulation on heart rate variability in healthy subjects. Autonomic Neuroscience. 2017;203:88-96. https://doi.org/10.1016/j.autneu.2016.11.003
  2. Howland RH. Vagus nerve stimulation. Current behavioral neuroscience reports. 2014;1(2):64-73. https://doi.org/10.1007/s40473-014-0010-5
  3. Kamath MV, Fallen EL. Power spectral analysis of heart rate variability: a noninvasive signature of cardiac autonomic function. Critical reviews in biomedical engineering. 1993;21(3): 245-311.
  4. Krahl SE, Senanayake SS, Pekary AE, Sattin A. Vagus nerve stimulation (VNS) is effective in a rat model of antidepressant action. Journal of psychiatric research. 2004;38(3):237-40. https://doi.org/10.1016/j.jpsychires.2003.11.005
  5. Furmaga H, Shah A, Frazer A. Serotonergic and noradrenergic pathways are required for the anxiolytic-like and antidepressant-like behavioral effects of repeated vagal nerve stimulation in rats. Biological psychiatry. 2011;70(10):937-45. https://doi.org/10.1016/j.biopsych.2011.07.020
  6. De Ferrari GM, Crijns HJ, Borggrefe M, Milasinovic G, Smid J, Zabel M, Gavazzi A, Sanzo A, Dennert R, Kuschyk J. Chronic vagus nerve stimulation: a new and promising therapeutic approach for chronic heart failure. European heart journal. 2011;32(7):847-55. https://doi.org/10.1093/eurheartj/ehq391
  7. Yu L, Scherlag BJ, Li S, Fan Y, Dyer J, Male S, Varma V, Sha Y, Stavrakis S, Po SS. Low-level transcutaneous electrical stimulation of the auricular branch of the vagus nerve: a noninvasive approach to treat the initial phase of atrial fibrillation. Heart rhythm. 2013;10(3):428-35. https://doi.org/10.1016/j.hrthm.2012.11.019
  8. Banni S, Carta G, Murru E, Cordeddu L, Giordano E, Marrosu F, Puligheddu M, Floris G, Asuni GP, Cappai AL. Vagus nerve stimulation reduces body weight and fat mass in rats. 2012.
  9. Bray GA. Afferent signals regulating food intake. Proceedings of the Nutrition Society. 2000;59(3):373-84. https://doi.org/10.1017/S0029665100000422
  10. Wang S, Zhai X, Li S, McCabe MF, Wang X, Rong P. Transcutaneous vagus nerve stimulation induces tidal melatonin secretion and has an antidiabetic effect in Zucker fatty rats. PLoS One. 2015;10(4):e0124195.
  11. Cabyoglu MT, Ergene N, Tan U. The treatment of obesity by acupuncture. International journal of neuroscience. 2006;116(2):165-75. https://doi.org/10.1080/00207450500341522
  12. Chae J-H, Pae C-U, Bahk W-M, Jun T, Kim K-S, George MS. Application of vagus nerve stimulation in neuropsychiatry. Journal of Korean Neuropsychiatric Association. 2001:371-80.
  13. Handforth A, DeGiorgio C, Schachter S, Uthman B, Naritoku D, Tecoma E, Henry T, Collins S, Vaughn B, Gilmartin R. Vagus nerve stimulation therapy for partial-onset seizures: a randomized active-control trial. Neurology. 1998;51(1):48-55. https://doi.org/10.1212/WNL.51.1.48
  14. Asconape JJ, Moore DD, Zipes DP, Hartman LM, Duffell Jr WH. Bradycardia and asystole with the use of vagus nerve stimulation for the treatment of epilepsy: a rare complication of intraoperative device testing. Epilepsia. 1999;40(10):1452-4. https://doi.org/10.1111/j.1528-1157.1999.tb02019.x
  15. Ben-Menachem E. Vagus-nerve stimulation for the treatment of epilepsy. The Lancet Neurology. 2002;1(8):477-82. https://doi.org/10.1016/S1474-4422(02)00220-X
  16. Kim YK, Hwang GS, Huh IY, Seo HS, Kang SJ, Jung SM, Hahm KD, Han SM. Complete Atrioventricular Nodal Block in Patient Undergoing Left Vagus Nerve Stimulation: A case report. Korean Journal of Anesthesiology. 2005;49(4):578-80. https://doi.org/10.4097/kjae.2005.49.4.578
  17. Frangos E, Ellrich J, Komisaruk BR. Non-invasive access to the vagus nerve central projections via electrical stimulation of the external ear: fMRI evidence in humans. Brain stimulation. 2015;8(3):624-36. https://doi.org/10.1016/j.brs.2014.11.018
  18. Rong P-J, Fang J-L, Wang L-P, Meng H, Liu J, Ma Y-g, Ben H, Li L, Liu R-P, Huang Z-X. Transcutaneous vagus nerve stimulation for the treatment of depression: a study protocol for a double blinded randomized clinical trial. BMC Complementary and Alternative Medicine. 2012;12(1):1-6. https://doi.org/10.1186/1472-6882-12-1
  19. Rong P, Liu J, Wang L, Liu R, Fang J, Zhao J, Zhao Y, Wang H, Vangel M, Sun S. Effect of transcutaneous auricular vagus nerve stimulation on major depressive disorder: a nonrandomized controlled pilot study. Journal of Affective Disorders. 2016;195:172-9. https://doi.org/10.1016/j.jad.2016.02.031
  20. Hamer HM, Bauer S. Lessons learned from transcutaneous vagus nerve stimulation (tVNS). Epilepsy research. 2019;153:83-4. https://doi.org/10.1016/j.eplepsyres.2019.02.015
  21. Kozorosky EM, Lee CH, Lee JG, Nunez Martinez V, Padayachee LE, Stauss HM. Transcutaneous auricular vagus nerve stimulation augments postprandial inhibition of ghrelin. Physiological Reports. 2022;10(8):e15253.
  22. Kirk JK, Stegner J. Self-monitoring of blood glucose: practical aspects. Journal of diabetes science and technology. 2010;4(2):435-9. https://doi.org/10.1177/193229681000400225
  23. Rhee EJ. The effects of postprandial hyperglycemia on glucose control. The Journal of Korean Diabetes. 2012;13(1):23-6. https://doi.org/10.4093/jkd.2012.13.1.23
  24. Tobaldini E, Toschi-Dias E, Appratto de Souza L, Rabello Casali K, Vicenzi M, Sandrone G, Cogliati C, La Rovere MT, Pinna GD, Montano N. Cardiac and peripheral autonomic responses to orthostatic stress during transcutaneous vagus nerve stimulation in healthy subjects. Journal of clinical medicine. 2019;8(4):496.
  25. Badran BW, Alfred BY, Adair D, Mappin G, DeVries WH, Jenkins DD, George MS, Bikson M. Laboratory administration of transcutaneous auricular vagus nerve stimulation (taVNS): technique, targeting, and considerations. JoVE (Journal of Visualized Experiments). 2019(143):e58984.
  26. Antal A, Alekseichuk I, Bikson M, Brockmoller J, Brunoni AR, Chen R, Cohen L, Dowthwaite G, Ellrich J, Floel A. Low intensity transcranial electric stimulation: safety, ethical, legal regulatory and application guidelines. Clinical Neurophysiology. 2017;128(9):1774-809. https://doi.org/10.1016/j.clinph.2017.06.001
  27. Pagani M, Lombardi F, Guzzetti S, Sandrone G, Rimoldi O, Malfatto G, Cerutti S, Malliani A. Power spectral density of heart rate variability as an index of sympatho-vagal interaction in normal and hypertensive subjects. Journal of hypertension Supplement: official journal of the International Society of Hypertension. 1984;2(3):S383-5.
  28. Cho YC, Kim MS. Characteristics in HRV (heart rate variability), GSR (galvanic skin response) and skin temperature for stress estimate. Journal of the Korea Industrial Information Systems Research. 2015;20(3):11-8. https://doi.org/10.9723/JKSIIS.2015.20.3.011
  29. Lidberg L, Wallin BG. Sympathetic skin nerve discharges in relation to amplitude of skin resistance responses. Psychophysiology. 1981;18(3):268-70. https://doi.org/10.1111/j.1469-8986.1981.tb03033.x
  30. Bini G, Hagbarth K, Hynninen Pt, Wallin B. Thermoregulatory and rhythm-generating mechanisms governing the sudomotor and vasoconstrictor outflow in human cutaneous nerves. The Journal of physiology. 1980;306(1):537-52. https://doi.org/10.1113/jphysiol.1980.sp013413
  31. Peuker ET, Filler TJ. The nerve supply of the human auricle. Clinical Anatomy. 2002;15(1):35-7. https://doi.org/10.1002/ca.1089
  32. Bermejo P, Lopez M, Larraya I, Chamorro J, Cobo J, Ordonez S, Vega J. Innervation of the human cavum conchae and auditory canal: anatomical basis for transcutaneous auricular nerve stimulation. BioMed research international. 2017;2017.
  33. Badran BW, Dowdle LT, Mithoefer OJ, LaBate NT, Coatsworth J, Brown JC, DeVries WH, Austelle CW, McTeague LM, George MS. Neurophysiologic effects of transcutaneous auricular vagus nerve stimulation (taVNS) via electrical stimulation of the tragus: a concurrent taVNS/fMRI study and review. Brain stimulation. 2018;11(3):492-500. https://doi.org/10.1016/j.brs.2017.12.009
  34. Keute M, Ruhnau P, Heinze H-J, Zaehle T. Behavioral and electrophysiological evidence for GABAergic modulation through transcutaneous vagus nerve stimulation. Clinical Neurophysiology. 2018;129(9):1789-95. https://doi.org/10.1016/j.clinph.2018.05.026
  35. Yuan H, Silberstein SD. Vagus nerve and vagus nerve stimulation, a comprehensive review: part II. Headache: The Journal of Head and Face Pain. 2016;56(2):259-66. https://doi.org/10.1111/head.12650
  36. Kreuzer PM, Landgrebe M, Husser O, Resch M, Schecklmann M, Geisreiter F, Poeppl TB, Prasser SJ, Hajak G, Langguth B. Transcutaneous vagus nerve stimulation: retrospective assessment of cardiac safety in a pilot study. Frontiers in psychiatry. 2012;3:70.
  37. Wolf V, Kuhnel A, Teckentrup V, Koenig J, Kroemer NB. Does transcutaneous auricular vagus nerve stimulation affect vagally mediated heart rate variability? A living and interactive Bayesian meta-analysis. Psychophysiology. 2021;58(11):e13933.
  38. Dalgleish AS, Kania AM, Stauss HM, Jelen AZ. Occipitoatlantal decompression and noninvasive vagus nerve stimulation slow conduction velocity through the atrioventricular node in healthy participants. Journal of Osteopathic Medicine. 2021;121(4):349-59. https://doi.org/10.1515/jom-2020-0213
  39. Kania AM, Weiler KN, Kurian AP, Opena ML, Orellana JN, Stauss HM. Activation of the cholinergic antiinflammatory reflex by occipitoatlantal decompression and transcutaneous auricular vagus nerve stimulation. Journal of Osteopathic Medicine. 2021;121(4):401-15. https://doi.org/10.1515/jom-2020-0071
  40. Yap JY, Keatch C, Lambert E, Woods W, Stoddart PR, Kameneva T. Critical review of transcutaneous vagus nerve stimulation: challenges for translation to clinical practice. Frontiers in Neuroscience. 2020:284.