• Title/Summary/Keyword: rate of distillation

Search Result 96, Processing Time 0.03 seconds

Water cost analysis of different membrane distillation process configurations for brackish water desalination

  • Saleh, Jehad M;Ali, Emad M.;Orfi, Jamel A;Najib, Abdullah M
    • Membrane and Water Treatment
    • /
    • v.11 no.5
    • /
    • pp.363-374
    • /
    • 2020
  • Membrane distillation (MD) is a process used for water desalination. However, its commercialization is still hindered by its increased specific cost of production. In this work, several process configurations comprising Direct Contact and Permeate Gap distillation membrane units (PGMD/DCMD) were investigated to maximize the production rate and consequently reduce the specific water cost. The analysis was based on a cost model and an experimentally validated MD model. It was revealed that the best achievable water cost was approximately 5.1 $/㎥ with a production rate of 8000 ㎥/y. This cost can be further decreased to approximately 2 $/㎥ only if the heating and cooling energies are free of cost. Therefore, it is necessary to decrease the MD capital investment to produce pure water at economical prices.

An Experimental Study on the Characteristic of Thermal Performance according to Feed Water Conditions to of Vacuum Membrane Distillation Module using PVDF Hollow Fiber (PVDF 중공사막을 이용한 진공 막 증류 모듈의 공급수 조건에 따른 열성능 특성에 관한 실험적 연구)

  • Joo, Hongjin;Kwak, Heeyoul
    • Journal of Korean Society of Water and Wastewater
    • /
    • v.31 no.4
    • /
    • pp.339-346
    • /
    • 2017
  • In this study, thermal performance test of VMD module was performed, prior to the construction of the demonstration plant using the vacuum membrane distillation (VMD) module of the capacity of $400m^3/day$ and to the commercialization of the VMD module. For the thermal performance test, the experimental equipment of capacity of $2m^3/day$ was constructed. The permeate flux test and thermal performance test according to feed water conditions such as temperature and flow rate were conducted. The VMD module used in the study was manufactured by ECONITY Co., LTD with PVDF hollow fiber membrane. As a result, the Performance Ratio (PR) of the VMD module showed the maximum value of 0.904 under the condition of feed water temperature of $75^{\circ}C$ and flow rate of $8m^3/h$. PR value of the VMD module using PVDF hollow fiber membrane showed linearly increasing relationship with feed water temperature and flow rate. Also, The permeate flux of the VMD module was analyzed to have maximum value of 18.25 LMH and the salt rejection was 99.99%.

Analysis of thermal energy efficiency for hollow fiber membranes in direct contact membrane distillation

  • Park, Youngkyu;Lee, Sangho
    • Environmental Engineering Research
    • /
    • v.24 no.2
    • /
    • pp.347-353
    • /
    • 2019
  • Although membrane distillation (MD) has great promise for desalination of saline water sources, it is crucial to improve its thermal efficiency to reduce the operating cost. Accordingly, this study intended to examine the thermal energy efficiency of MD modules in a pilot scale system. Two different modules of hollow fiber membranes were compared in direct contact MD mode. One of them was made of polypropylene with the effective membrane area of $2.6m^2$ and the other was made of polyvinylidene fluoride with the effective membrane area of $7.6m^2$. The influence of operation parameters, including the temperatures of feed and distillate, feed flow rate, and distillate flow rate on the flux, recovery, and performance ratio (PR), was investigated. Results showed that the two MD membranes showed different flux and PR values even under similar conditions. Moreover, both flow rate and temperature difference between feed and distillate significantly affect the PR values. These results suggest that the operating conditions for MD should be determined by considering the module properties.

Extraction Method of Antioxidants in Soybean Oil (Sweep Co-Distillation 법에 의한 산화방지제의 추출법)

  • 황혜정
    • The Korean Journal of Food And Nutrition
    • /
    • v.12 no.4
    • /
    • pp.358-363
    • /
    • 1999
  • This study was conducted to evaluate the extraction methods for the determination of antioxidants in soybean oil. Recovery rates of various antioxidants in soybean oil showed similar rates as 80.4~102.1% by solvent/solvent extraction method and 89.9~106.4% by sweep co-distillation method except 46.6~61.2% of PG at corresponding spiked concentractions. The maximun recovery rates of antioxidnts were obtained when extraction time and extraction temperature used in UNITREX were 20min and 21$0^{\circ}C$ respectively. In the recovery rates with the activation of florisil when 2% ofwater was added to florisil the highest recovery rates for TBHQ, BHA, BHT were obtained by sweep co-distillation met-hod. Therefore sweep co-distillation method showed less solvent simple operation and high recovery rate compared with solvent/solvent extraction method.

  • PDF

Distillation of Cd- ZrO2 and Cd- Bi in Crucible With Splatter Shield

  • Kwon, S.W.;Kwon, Y.W.;Jung, J.H.;Kim, S.H.;Lee, S.J.
    • Proceedings of the Korean Radioactive Waste Society Conference
    • /
    • 2018.11a
    • /
    • pp.103-103
    • /
    • 2018
  • The liquid cathode processing is necessary to separate cadmium from the actinide elements in the pyroprocessing since the actinide deposits are dissolved or precipitated in a liquid cathode. Distillation process was employed for the cathode processing owing to the compactness. It is very important to avoid a splattering of cadmium during evaporation due to the high vapor pressure. Several methods have been proposed to lower the splattering of cadmium during distillation. A multi-layer porous round cover was proposed to avoid a cadmium splattering in our previous study. In this study, distillation behavior of $Cd-ZrO_2$ and Cd - Bi systems were investigated to examine a multi-layer porous round cover for the development of the cadmium splatter shield of distillation crucible. It was designed that the cadmium vapor can be released through the holes of the shield, whereas liquid drops can be collected in the multiple hemisphere. The cover was made with three stainless steel round plates with a diameter of 33.50 mm. The distance between the hemispheres and the diameter of the holes are 10 and 1 mm, respectively. Bismuth or zirconium oxide powder was used as a surrogate for the actinide elements. About 40 grams of Cd was distilled at a reduced pressure for two hours at various temperatures. The mixture of the cadmium and the surrogate was distilled at 470, 570 and $620^{\circ}C$ in the crucible with the cover. Most of the bismuth or zirconia remained in the crucible after distillation at 470 and $570^{\circ}C$ for two hours. It was considered that the crucible cover hindered the splattering of the liquid cadmium from the distillation crucible. A considerable amount of the surrogate material reduced after distillation at $620^{\circ}C$ due to the splattering of the liquid cadmium. The low temperature is favorable to avoid a liquid cadmium splattering during distillation. However, the optimum temperature for the cadmium distillation should be decided further, since the evaporation rate decreases with a decreasing temperature.

  • PDF

A Study on the Thermal Characteristics of Vacuum Membrane Distillation Module (VMD 모듈의 열성능 특성 연구)

  • Joo, Hong-Jin;Yang, Yong-Woo;Kwak, Hee-Youl
    • Journal of the Korean Solar Energy Society
    • /
    • v.34 no.5
    • /
    • pp.23-31
    • /
    • 2014
  • This study was accomplished to get the foundation design data of VMD(Vacuum Membrane Distillation) system for Solar Thermal VMD plant. VMD experiment was designed to evaluate thermal performance of VMD using PVDF(polyvinylidene fluoride) hollow fiber hydrophobic membranes. The total membrane surface area in a VMD module is $5.3m^2$. Experimental equipments to evaluate VMD system consists of various parts such as VMD module, heat exchanger, heater, storage tank, pump, flow meter, micro filter. The experimental conditions to evaluate VMD module were salt concentration, temperature, flow rate of feed sea water. Salt concentration of feed water were used by aqueous NaCl solutions of 25g/l, 35g/l and 45g/l concentration. As a result, increase in permeate flux of VMD module is due to the increasing feed water temperature and feed water flow rate. Also, decrease in permeate flux of VMD module is due to increasing salinity of feed water. VMD module required about 590 kWh/day of heating energy to produce $1m^3/day$ of fresh water.

An application study for generalized predictive control in distillation column (증류탑에서의 일반형 예측제어(GPC) 응용 연구)

  • Cha, M. H.;Lo, K.;Yoon, E. S.;Yeo, Y. K.;Song, H. K.
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1990.10a
    • /
    • pp.225-228
    • /
    • 1990
  • The major difficulty in distillation column control lies in executing the set point tracking and the disturbance rejection, because of continuous changes in model order and dead time. For that, generalized predictive control(GPC) was applied to distillation column control. Recursive least square method was used to adjust the changes of model order and dead time. Quadratic progamming(QP) was used to solve the constraint problems in control action and the rate of control action. As a result of the simulation on the dynamic simulator(SPEEDUP) and the experiment on pilot plant, the ability of the set point tracking and the disturbance rejection was acceptable to apply to the real distillation column.

  • PDF

A Study on the Flux and Heat Transfer of Direct Contact Type Module Applied for a Pilot Scale Membrane Distillation Process (파일럿 규모 막 증발 공정 적용을 위한 직접 접촉식 모듈의 투과유속 및 열에너지 이동에 관한 연구)

  • Kim, Seung Hwan;Kim, Se Woon;Lee, Dong Woo;Cho, Jin Woo
    • Journal of Korean Society of Water and Wastewater
    • /
    • v.31 no.3
    • /
    • pp.229-236
    • /
    • 2017
  • In this study, a direct contact membrane module was manufactured to be used in a pilot scale membrane distillation process to treat $3m^3/day$ of the digestate produced from anaerobic digestion of livestock manure. In order to investigate the performance of the membrane module, permeate flux was measured with and without spacer inside the module under various condition of temperature difference and cross flow velocity (CFV) through the membrane surfaces. Flux recovery rate after chemical cleaning was also investigated by applying three different cleaning methods. Additionally, thermal energy consumption was theoretically simulated based on actual pilot plant operation conditions. As results, we observed flux of the module with spacer was almost similar to the theoretically predicted value because the installation of spacer reduced the channeling effect inside the module. Under the same operating condition, the permeate flux also increased with increasing temperature difference and CFV. As a result of chemical in-line cleaning using NaOCl and citric acid for the fouled membranes, the recovery rate was 83.7% compared to the initial flux when NaOCl was used alone, and 87% recovery rate was observed when only citric acid was used. However, in the case of using only citric acid, the permeate flux was decreased at a rapid rate. It seemed that a cleaning by NaOCl was more effective to recover the flux of membrane contaminated by the organic matter as compared to a cleaning by citric acid. The total heat energy consumption increased with increasing CFV and temperature difference across the membrane. Thus, further studies should be intensively conducted to obtain a high permeate flux while keeping the energy consumption to a minimum for a practical application of membrane distillation process to treat wastewater.

Effective study of operating parameters on the membrane distillation processes using various materials for seawater desalination

  • Sandid, Abdelfatah Marni;Neharia, Driss;Nehari, Taieb
    • Membrane and Water Treatment
    • /
    • v.13 no.5
    • /
    • pp.235-243
    • /
    • 2022
  • The paper presents the effect of operating temperatures and flow rates on the distillate flux that can be obtained from a hydrophobic membrane having the characteristics: pore size of 0.15 ㎛; thickness of 130 ㎛; and 85% porosity. That membrane in the present investigation could be the direct contact (DCMD) or the air-gap membrane distillation (AGMD). To model numerically the membrane distillation processes, the two-dimensional computational fluid dynamic (CFD) is used for the DCMD and AGMD cases here. In this work, DCMD and AGMD models have been validated with the experimental data using different flows (Parallel and Counter-current flows) in non-steady-state situations. A good agreement is obtained between the present results and those of the experimental data in the literature. The new approach in the present numerical modeling has allowed examining effects of the nature of materials (Polyvinylidene fluoride (PVDF) polymers, copolymers, and blends) used on thermal properties. Moreover, the effect of the area surface of the membrane (0.021 to 3.15 ㎡) is investigated to explore both the laminar and the turbulent flow regimes. The obtained results found that copolymer P(VDF-TrFE) (80/20) is more effective than the other materials of membrane distillation (MD). The mass flux and thermal efficiency reach 193.5 (g/㎡s), and 83.29 % using turbulent flow and an effective area of 3.1 ㎡, respectively. The increase of feed inlet temperatures and its flow rate, with the reduction of cold temperatures and its flow rate are very effective for increasing distillate water flow in MD applications.

Permeate Flux Analysis of Direct Contact Membrane Distillation (DCMD) and Sweep Gas Membrane Distillation (SGMD) (직접접촉식과 동반기체식 막증류 공정의 투과수 변화에 따른 비교해석)

  • Eum, Su-Hwan;Kim, Albert S.;Lee, Yong-Taek
    • Membrane Journal
    • /
    • v.21 no.3
    • /
    • pp.236-246
    • /
    • 2011
  • In this study, we used prepared a cylindrical module consisting 100 hollow fibers of commercialized (hydrophobic) polyethylene membrane of $0.4{\mu}m$ pore size and systematically studied performance of direct contact membrane distillation (DCMD) and sweep gas membrane distillation (SGMD) in terms of variation of permeate flux and salt rejection with respect to temperature drop across the membrane, salt concentrations in feed, and flow rates of cooling water and sweep gas. SGMD was regarded as DCMD with a sweep gas layer between permeate-side membrane surface and cooling water. Sweep gas flow decreases the permeate flux from that of DCMD by providing an additional gas-layer resistance. We compared DCMD and SGMD performance by using mass balance with a fitting parameter (${\omega}$), indicating fraction of permeate flow rate.