• Title/Summary/Keyword: rat calvarial defect

Search Result 75, Processing Time 0.03 seconds

BONE REGENERATION WITH MMP SENSITIVE HYALURONIC ACID-BASED HYDROGEL, rhBMP-2 AND NANOPARTICLES IN RAT CALVARIAL CRITICAL SIZE DEFECT(CSD) MODEL (Matrix metalloproteinase(MMP) sensitive hyaluronic acid hydrogel-nanoparticle complex와 rhBMP-2를 이용한 골재생)

  • Nam, Jeong-Hun;Park, Jong-Chul;Yu, Sang-Bae;Chung, Yong-Il;Tae, Gi-Yoong;Kim, Jung-Ju;Park, Yong-Doo;Jahng, Jeong-Won;Lee, Jong-Ho
    • Journal of the Korean Association of Oral and Maxillofacial Surgeons
    • /
    • v.35 no.3
    • /
    • pp.137-145
    • /
    • 2009
  • As an efficient controlled release system for rhBMP-2, a functional nanoparticle-hydrogel complex, incorporated with matrix metalloproteinase(MMP) sensitive peptide cross-linker, was developed and used as a bone transplant. In vivo bone formation was evaluated by soft x-ray, histology, alkaline phosphatase(ALP) activity and mineral contents analysis, based on the rat calvarial critical size defect(8mm in diameter) model. Significantly, effective bone regeneration was achieved with the rhBMP-2 loaded MMP sensitive hyaluronic acid(HA) based hydrogel-Nanoparticles(NP) complex, as compared to only MMP HA, the MMP HA-NP without rhBMP-2, or even with the rhBMP-2. These improvements included the formation pattern of bone and functional marrow, the degree of calcium quantification, and the ALP activity. These results indicate that the MMP sensitive HA with nano-particle complex can be a promising candidate for a new bone defect replacement matrix, and an enhanced rhBMP-2 scaffold.

The effect of bacterial cellulose membrane compared with collagen membrane on guided bone regeneration

  • Lee, So-Hyoun;Lim, Youn-Mook;Jeong, Sung In;An, Sung-Jun;Kang, Seong-Soo;Jeong, Chang-Mo;Huh, Jung-Bo
    • The Journal of Advanced Prosthodontics
    • /
    • v.7 no.6
    • /
    • pp.484-495
    • /
    • 2015
  • PURPOSE. This study was to evaluate the effects of bacterial cellulose (BC) membranes as a barrier membrane on guided bone regeneration (GBR) in comparison with those of the resorbable collagen membranes. MATERIALS AND METHODS. BC membranes were fabricated using biomimetic technology. Surface properties were analyzed, Mechanical properties were measured, in vitro cell proliferation test were performed with NIH3T3 cells and in vivo study were performed with rat calvarial defect and histomorphometric analysis was done. The Mann-Whitney U test and the Wilcoxon signed rank test was used (${\alpha}<.05$). RESULTS. BC membrane showed significantly higher mechanical properties such as wet tensile strength than collagen membrane and represented a three-dimensional multilayered structure cross-linked by nano-fibers with 60 % porosity. In vitro study, cell adhesion and proliferation were observed on BC membrane. However, morphology of the cells was found to be less differentiated, and the cell proliferation rate was lower than those of the cells on collagen membrane. In vivo study, the grafted BC membrane did not induce inflammatory response, and maintained adequate space for bone regeneration. An amount of new bone formation in defect region loaded with BC membrane was significantly similar to that of collagen membrane application. CONCLUSION. BC membrane has potential to be used as a barrier membrane, and efficacy of the membrane on GBR is comparable to that of collagen membrane.

Effect of Type I Collagen on Hydroxyapatite and Tricalcium Phosphate Mixtures in Rat Calvarial Bony Defects

  • Kim, Jung-Hwan;Kim, Soung-Min;Kim, Ji-Hyuck;Kwon, Kwang-Jun;Park, Young-Wook
    • Journal of the Korean Association of Oral and Maxillofacial Surgeons
    • /
    • v.34 no.1
    • /
    • pp.36-48
    • /
    • 2008
  • To repair bone defects in the oral and maxillofacial field, bone grafts including autografts, allografts, and artificial bone are used in clinical dentistry despite several disadvantages. The purpose of this study was to evaluate new bone formation and healing in rat calvarial bone defects using hydroxyapatite (HA, $Ca_{10}[PO_4]_6[OH]_2,\;Bongros^{(R)}$, Bio@ Co., KOREA) and tricalcium phosphate (${\beta}-TCP,\;Ca_3[PO_4]_2$, Sigma-Aldrich Co., USA) mixed at various ratios. Additionally, this study evaluated the effects of type I collagen (Rat tail, BD Biosciences Co., Sweden) as a basement membrane organic matrix. A total of twenty, 8-week-old, male Sprague-Dawley rats, weighing 250-300g, were divided equally into a control group (n=2) and nine experimental groups (n=2, each). Bilateral, standardized transosseous circular calvarial defects, 5.0 mm in diameter, were created. In each experimental group, the defect was filled with HA and TCP at a ratio of 100:0, 80:20, 70:30, 60:40, 50:50, 40:60, 30:70, 20:80, and 0:100 with or without type I collagen. Rats were sacrificed 4 and 8 weeks post-operation for radiographic (standardized plain film, Kodak Co., USA), histomorphologic (H&E [Hematoxylin and Eosin], MT [Masson Trichrome]), immunohistochemical staining (for BMP-2, -4, VEGF, and vWF), and elementary analysis (Atomic absorption spectrophotometer, Perkin Elmer AAnalyst $100^{(R)}$). As the HA proportion increased, denser radiopacity was seen in most groups at 4 and 8 weeks. In general radiopacity in type I collagen groups was greater than the non-collagen groups, especially in the 100% HA group at 8 weeks. No new bone formation was seen in calvarial defects in any group at 4 weeks. Bridging bone formation from the defect margin was marked at 8 weeks in most type I collagen groups. Although immunohistochemical findings with BMP-2, -4, and VEGF were not significantly different, marked vWF immunoreactivity was present. vWF staining was especially strong in endothelial cells in newly formed bone margins in the 100:0, 80:20, and 70:30 ratio type I collagen groups at 8 weeks. The calcium compositions from the elementary analysis were not statistically significant. Many types of artificial bone have been used as bone graft materials, but most of them can only be applied as an inorganic material. This study confirmed improved bony regeneration by adding organic type I collagen to inorganic HA and TCP mixtures. Therefore, these new artificial bone graft materials, which are under strict storage and distribution systems, will be suggested to be available to clinical dentistry demands.

Effects of Locally Applicated Safflower Seeds Extract on Bone Regeneration of Rat Calvarial Defects (홍화씨 추출물의 국소투여가 백서 두개골 결손부 재생에 미치는 영향)

  • Kim, Doek-Kyu;Hong, Sung-Woo;You, Kyung-Tae;Seo, Jae-Jin;Kim, Heung-Shik;You, Hyung-Keun;Shin, Hyung-Shik
    • Journal of Periodontal and Implant Science
    • /
    • v.29 no.2
    • /
    • pp.297-313
    • /
    • 1999
  • The ultimate goal of periodontal treatment is the regeneration of periodontal tissues which have been lost due to periodontal disease. Recently, many natural medicines have been studied for their potential of anti-bacterial, anti-inflammatory and regenerative effects in periodontal tissues. Safflower seeds have been traditionally used as a drug for treatment of fracture and blood stasis in oriental medicine. The objective of the present study is to examine the biologic effects of safflower seeds extract on bone formation and regeneration of rat calvarial defects. The calvarial defects were made with 8mm trephine bur and extract of safflower seeds were placed directly at these defects. 24 rats were divided into control and experimental groups, and each group was sacrificed at 1 week, 4 weeks and 8 weeks. To study a histopathology related to bone regeneration, Goldner's Masson Trichrome stain and histomorphologic measuring was done at each weeks. In the early phase of bone healing, less inflammatory infiltration and capillary proliferation was found in experimental group compared to control. Dense bony tissues and matured bone structures in defect areas were found in experimental groups. And area of new bone formation was significantly increased at 8 weeks in experimental group. These results indicate that direct local application of safflower seeds extract reduces the early inflammatory response and promotes the regeneration of new bone in calvarial defects of rats.

  • PDF

Comparable efficacy of silk fibroin with the collagen membranes for guided bone regeneration in rat calvarial defects

  • Kim, Jwa-Young;Yang, Byoung-Eun;Ahn, Jin-Hee;Park, Sang O;Shim, Hye-Won
    • The Journal of Advanced Prosthodontics
    • /
    • v.6 no.6
    • /
    • pp.539-546
    • /
    • 2014
  • PURPOSE. Silk fibroin (SF) is a new degradable barrier membrane for guided bone regeneration (GBR) that can reduce the risk of pathogen transmission and the high costs associated with the use of collagen membranes. This study compared the efficacy of SF membranes on GBR with collagen membranes (Bio-$Gide^{(R)}$) using a rat calvarial defect model. MATERIALS AND METHODS. Thirty-six male Sprague Dawley rats with two 5 mm-sized circular defects in the calvarial bone were prepared (n=72). The study groups were divided into a control group (no membrane) and two experimental groups (SF membrane and Bio-$Gide^{(R)}$). Each group of 24 samples was subdivided at 2, 4, and 8 weeks after implantation. New bone formation was evaluated using microcomputerized tomography and histological examination. RESULTS. Bone regeneration was observed in the SF and Bio-$Gide^{(R)}$-treated groups to a greater extent than in the control group (mean volume of new bone was $5.49{\pm}1.48mm^3$ at 8 weeks). There were different patterns of bone regeneration between the SF membrane and the Bio-$Gide^{(R)}$ samples. However, the absolute volume of new bone in the SF membrane-treated group was not significantly different from that in the collagen membrane-treated group at 8 weeks ($8.75{\pm}0.80$ vs. $8.47{\pm}0.75mm^3$, respectively, P=.592). CONCLUSION. SF membranes successfully enhanced comparable volumes of bone regeneration in calvarial bone defects compared with collagen membranes. Considering the lower cost and lesser risk of infectious transmission from animal tissue, SF membranes are a viable alternative to collagen membranes for GBR.

Effect of Matrigel for Bone Graft using Hydroxyapatite/Poly $\varepsilon$-caprolactone Scaffold in a Rat Calvarial Defect Model (랫드의 두개골결손부 모델에서 HA/PCL 지지체를 사용한 골이식 시 Matrigel의 효과)

  • Kim, Se-Eun; Shim, Kyung-Mi;Kim, Seung-Eon;Choi, Seok-Hwa;Bae, Chun-Sik;Han, Ho-Jae;Kang, Seong-Soo
    • Journal of Veterinary Clinics
    • /
    • v.27 no.4
    • /
    • pp.325-329
    • /
    • 2010
  • The osteogenic potential of hydroxyapatite/poly $\varepsilon$-caprolactone composite (HA/PCL) scaffolds with matrigel was evaluated in a rat calvarial defect model. Calvarial defect formation was surgically created in Sprague Dawley rats (n = 18). HA/PCL scaffold was grafted with matrigel (M-HA/PCL group, n = 6) or without matrigel (HA/PCL group, n = 6). A critical defect group (CD group, n = 6) did not received a graft. Four weeks after surgery, bone formation was evaluated with radiography, micro computed tomography (micro CT) scanning, and histologically. No bone tissue formation was radiographically evident in the CD group. Bone tissue was radiographically evident in the HA/PCL and M-HA/PCL groups, however, there was more bone-similar opacity in the M-HA/PCL group. Micro CT analysis revealed that the bone volume of the M-HA/PCL group was higher than the HA/PCL group, however, no significant difference was found between the HA/PCL and M-HA/PCL groups. Bone mineral density in the M-HA/ PCL group was significantly higher than in the HA/PCL group (p < 0.05). Histologically, new bone was formed only from existing bone in the CD group, showing concavity without bone formation in the defect. In the HA/PCL group, new bone formation was only derived from existing bone, while in the M-HA/PCL group the largest bone formation was observed, with new bone tissue forming at the periphery of existing bone and around the HA/PCL scaffold with matrigel. The results indicate that the combination of HA/PCL scaffold with matrigel may be an effective means of enhancing bone formation in critical-sized bone defects.

The Effect of Safflower Seed Extract on the Bone Formation of Calvarial Bone Model in Sprague Dawley rat (백서 두개골 결손부에서 홍화씨 추출물의 골조직 재생 유도 효과)

  • Kim, Sung-Tae;Jhon, Gil-Ja;Lim, So-Hyoung;Cho, Kyoo-Sung;Kim, Chong-Kwan;Choi, Seong-Ho
    • Journal of Periodontal and Implant Science
    • /
    • v.30 no.4
    • /
    • pp.835-852
    • /
    • 2000
  • The ultimate goal of periodontal therapy is the regeneration of periodontal tissue and repair of function. For more than a decade there have been many efforts to develop materials and methods of treatment to promote periodontal wound healing. Recently many efforts are concentrated on the regeneration potential of material used in oriental medicine. In some in vitro and in vivo experiments, there have been many evidences that these materials have an effect on bone regeneration. The purpose of this study was to evaluate histologically and radiologically in Sprague-Dawley rats the effects of safflower seed extracts on the regeneration of the calvarial defects surgically produced. So in this study, the critical size defects were surgically produced in the calvarial bone of 30 Sprague-Dawley rats using the 8mm trephine bur. The safflower seed extract was applied into the defect of each rat in experimental group, whereas nothing was applied into the defect of each rat in control group. Rats were sacrificed at 2, 4, 8 weeks following operation and histomorphometric and radiodensitometric analysis were performed. 1. The newly formed bone length was $102.91{\pm}22.05$, $178.29{\pm}24.40$ at 2 week in the each control, experimental group, $130.95{\pm}39.24$, $242.62{\pm}50.33$ at 4 week and $181.53{\pm}76.35$, $240.36{\pm}22.00$ at 8 week($unit,{\mu}m$). In the 2, 4 week, there were statistically significant difference between control and experimental group(P<0.05). 2. The newly formed bone area was $2962.06{\pm}1284.48$, $10648.35{\pm}1284.48$ at 2 week, $5103.25{\pm}1375.88$, $9706.78{\pm}1481.81$ at 4 week, $8046.02{\pm}818.99$, $12057.06{\pm}740.47$ at 8 week($unit,{\mu}m^2$). In every week, there were statistically significant difference between control and experimental group(P<0.05). 3. The radiopacity was $14.26{\pm}.33$, $25.47{\pm}4.33$ at 2 week, $20.06{\pm}9.07$, $26.61{\pm}2.78$ at 4 week, $22.99{\pm}3.76$, $27.29{\pm}1.54$ at 8 week(unit, %). In the 2 week, there was statistically significant difference between control and experimental group(P<0.05). In conclusion, the results of the present study suggest that safflower seed extract initially has an effect on the newly formed bone area, length and radiopacity when it is applied to the calvarial defect of Sprague - Dawley rat. Then. the material has an effect on newly formed bone area and length.

  • PDF

Effects of Safflower Seed Extract on the Osteoblastic Activity and Bone Regeneration (홍화씨 추출물이 조골모유사세포활성 및 골재생에 미치는 영향)

  • Yoon, Dong-Hwan;Lee, Seoung-Cheul;Kim, Myung-Eun;Kim, Eun-Cheol;You, Hyung-Keun;Kim, Youn-Chul;Shin, Hyung-Shik
    • Journal of Periodontal and Implant Science
    • /
    • v.28 no.4
    • /
    • pp.769-786
    • /
    • 1998
  • The purpose of the present study is to examine the effect of cell proliferation and alkaline phosphatase activity in osteoblastic cells and to compare the bone healing ability of rat calvarial defects between the control group and the safflower seed extract treated group. Osteoblastic cells were obtained from calvariae of a fetal rat. Cells were cultured containing DMEM and safflower seed extract ($10^{-6}g/ml$, $10^{-3}g/ml$) at $37^{\circ}$ with 5% $CO_2$ in 100% humidity for 3 days. MTT was performed to examine the viability of the cells, and alkaline phosphatase activity was analyzed to examine the mineralization in vitro. Rat calvarial defects($5{\times}5mm$) in 250g Sprague-Dawly were made using round bur. Rats were administrated with safflower seed extract(0.35g/kg/day) for experimental periods. Calvarial defects were studied histopathologically and immunohistochemically at 1,4, and 8 weeks. High concentration group($10^{-3}g/ml$) of safflower seed extract significantly increased in the cell proliferation and alkaline phos phatase synthesis in osteoblastic cells. The infiltration of inflammatory cells and osteoclastic activities were decreased in the safflower seed extract treated group as compared with control group. Bone maturation was accelerated in the safflower seed extract treated group as compared to control group. No difference in osteoinductive process was observed between the control and the safflower seed extract treated group. Immunohistochemical observation revealed that protein expression of TGF-$\beta$and osteonectin during early healing phase in the safflower seed extract treated group was slightly increased as compared to control group. These results indicate that safflower seed extract promotes the healing process in bony defect of rat calvariae, and retains a potential applicability as an adjuvant therapeutic modality for regeneration of periodontal bony defect.

  • PDF

The evaluation of the correlation between histomorphometric analysis and micro-computed tomography analysis in AdBMP-2 induced bone regeneration in rat calvarial defects

  • Park, Shin-Young;Kim, Kyoung-Hwa;Koo, Ki-Tae;Lee, Kang-Woon;Lee, Yong-Moo;Chung, Chong-Pyoung;Seol, Yang-Jo
    • Journal of Periodontal and Implant Science
    • /
    • v.41 no.5
    • /
    • pp.218-226
    • /
    • 2011
  • Purpose: Micro-computed tomography (micro-CT) has been widely used in the evaluation of regenerated bone tissue but the reliability of micro-CT has not yet been established. This study evaluated the correlation between histomorphometric analysis and micro-CT analysis in performing new bone formation measurement. Methods: Critical-size calvarial defects were created using a 8 mm trephine bur in a total of 24 Sprague-Dawley rats, and collagen gel mixed with autogenous rat bone marrow stromal cells (BMSCs) or autogenous rat BMSCs transduced by adenovirus containing bone morphogenic protein-2 (BMP-2) genes was loaded into the defect site. In the control group, collagen gel alone was loaded into the defect. After 2 and 4 weeks, the animals were euthanized and calvaria containing defects were harvested. Micro-CT analysis and histomorphometric analysis of each sample were accomplished and the statistical evaluation about the correlation between both analyses was performed. Results: New bone formation of the BMP-2 group was greater than that of the other groups at 2 and 4 weeks in both histomorphometric analysis and micro-CT analysis (P=0.026, P=0.034). Histomorphometric analysis of representative sections showed similar results to histomorphometric analysis with a mean value of 3 sections. Measurement of new bone formation was highly correlated between histomorphometric analysis and micro-CT analysis, especially at the low lower threshold level at 2 weeks (adjusted $r^2=0.907$, P<0.001). New bone formation of the BMP-2 group analyzed by micro-CT tended to decline sharply with an increasing lower threshold level, and it was statistically significant (P<0.001). Conclusions: Both histomorphometric analysis and micro-CT analysis were valid methods for measurement of the new bone in rat calvarial defects and the ability to detect the new bone in micro-CT analysis was highly influenced by the threshold level in the BMP-2 group at early stage.

The Effects of the Prefabricated Periosteofascial Flap through the Vascular Pedicles Transfer on the Bone Defect and the Optimal Period of the Pedicles Implantation (혈관경 전위를 이용한 선조작 골건막피판이 골 결손부 이식물에 미치는 영향과 적절한 혈관경 이식기간)

  • Won, Chang-Hoon;Kim, Sang-Bum;Seo, Sung-Ik;Han, Seung-Kyu;Kim, Woo-Kyung;Lee, Byung-Il
    • Archives of Reconstructive Microsurgery
    • /
    • v.13 no.2
    • /
    • pp.93-100
    • /
    • 2004
  • This study was designed to investigate the optimal period of pedicles implantation in the prefabricated periosteofascial flap with a vascular tissue transfer. The flap prefabrication was prepared with a transposition of left occipital pedicles on the calvarial fascia of male Sprague-Dawley rats. Thirty flaps were divided into five groups of six flaps, including control group (group I) of the conventional periosteofascial flap based on the lateral border of the rat calvarium. The prefabricated flap was elevated as an $1{\times}1cm$ sized island flap based on the implanted pedicle at 1, 2, 3, and 4 weeks after the pedicles transfer in groups II, III, IV, and V, respectively. After the completion of creating a critical-sized calvarial defect and implanting with hydroxyapatite granules, the flap was sutured back for covering the defect and kept isolated from surrounding tissues. Six weeks after flap repositioning, the osseous changes of the defect were examined with simple radiographic findings, radiodensitometric analysis, and histological studies. By simple radiographic findings, specimens of the control, groups IV and V showed homogeneous radioopacity within the defect. But in groups II and III, focal radiolucency was observed in the defect. In the radiodensitometric analysis, the control group and the group V showed significant increased radiodensites statistically. Histologically, the implanted hydroxyapatite was absorbed partly in the defect in groups II, III, and IV. In the defects of the control group and the group V, the implanted hydroxyapatite was kept in its volume and the deposition of the bone cells was observed sparsely. In conclusion, the prefabricated periosteofascial flap can be created with a vascular tissue transfer and the pedicles should be implanted at least for 4 weeks to bring out positive osseous changes in the calvarial defect.

  • PDF