• Title/Summary/Keyword: rat brain regions.

Search Result 70, Processing Time 0.024 seconds

Regional Heterogeneity of Morphological Changes in Cultured Rat Astrocytes

  • Won, Chung-Kil;Oh, Young-S.
    • The Korean Journal of Physiology and Pharmacology
    • /
    • v.5 no.6
    • /
    • pp.467-477
    • /
    • 2001
  • We examined astrocyte regional heterogeneity in their morphological changes in response to various stimuli. Astrocytes were cultured from six different neonatal rat brain regions including cerebral cortex, hippocampus, cerebellum, mid brain, brain stem and hypothalamus. Astrocyte stellation was induced by serum deprivation and the maximum stellation in different regional astrocytes was achieved after 2 h. After 24 h, in all astrocyte cultures, the level of stellation returned to their original level. Cerebellar or hypothalamic astrocytes were the most or the least sensitive, respectively, to serum deprivation. The order of maximum sensitivity to serum deprivation among different regional astrocytes was: cerebellum>mid $brain{\ge}hippocampus,\;brain\;stem{\ge}cerebral$ cortex>hypothalamus. Isoproterenol-induced astrocyte stellation was also examined in different regional astrocytes, and similar order of maximum sensitivity as in serum deprivation was observed. Next a possible developmental effect on astrocyte morphological changes was examined in cerebral cortex and cerebellum astrocytes cultured from postnatal day 1 (P1), P4 and P7 rat brains. A much higher sensitivity of cerebellum astrocytes to serum deprivation as well as isoproterenol treatment was consistently observed in P1, P4 and P7-derived astrocytes compared to cerebral cortex astrocytes. The present study demonstrates different regional astrocytes maintain different levels of morphological plasticity in vitro.

  • PDF

Toxic Effect of Inhaled Toluene on the Neural Cell (톨루엔 흡입이 신경세포에 미치는 독성)

  • 김대병;류종훈;신대섭;이종권;정경자;류승렬;최기환;이선희;김부영
    • Toxicological Research
    • /
    • v.13 no.3
    • /
    • pp.251-256
    • /
    • 1997
  • Toluene inhalation increases glutamate level and its receptor in various brain regions. In this study, nitric oxide synthase (NOS) activities were investigated in various rat brain regions using NADPH diaphorase staining method which examined histochemical changes of NOS in the neural cells. Also, in vitro LDH leakage assay and MTT test were performed to investigate the toxic influences of toluene in cultured granule cell of rat cerebellum which was significantly affected with toluene in vivo. Rats were exposed to toluene of 10000 ppm for 3 days. 7 days and 14 days by 20 min $\times$ 2 times a day. NADPH diaphorase staining was processed in the different brain regions after inhalation. NADPH diaphorase staining density was not significantly changed at 3 days inhalation group, but the density decreased in proportion to the duration of toluene inhalation. Over 30% of staining density was decreased at 14 days group which was maximum duration of inhalation in this study. The tendency of staining density decrease was significant in granule cell of cerebellum. Cell death by toluene exposure was observed in cultured cerebellar granule cell. $EC_{50}$ measured with LDH leakage assay and MTT test were 43 mM and 72 mM respectively.

  • PDF

Neuroprotective Effects of Boyanghwano-tang on Intracerebral Hemorrhage-Induced Rats Using Immunohistochemistry (보양환오탕(補陽還五湯)이 흰쥐 뇌출혈 손상에 미치는 영향에 대한 면역조직화학 연구)

  • Cha, Jae-Deog;Lee, Joon-Suk;Shin, Jung-Won;Kim, Seong-Joon;Kang, Hee;Sohn, Nak-Won
    • Journal of Physiology & Pathology in Korean Medicine
    • /
    • v.25 no.5
    • /
    • pp.799-806
    • /
    • 2011
  • This study was performed in order to evaluate the neuroprotective effect of Boyanghwano-tang (BYT) water extract on intracerebral hemorrhage (ICH). ICH was induced by the stereotaxic intrastriatal injection of bacterial collagenase type IV in Sprague-Dawley rats. BYT was orally given once a day for 3 days after ICH. Hematoma volume and percentage edema were examined. As imflammatory markers, myeloperoxidase (MPO)-positive neutrophils infiltration and iNOS expression in the peri-ICH regions were examined using immunohistochemistry. As cellular damage markers, c-Fos, Bax, and HSP72 positive cells in the peri-ICH regions were measured also. BYT significantly reduced the hematoma volume and percentage edema of the ICH-induced rat brain. In the peri-hematoma regions, BYT significantly reduced MPO-positive neutrophil infiltration and iNOS expression of the ICH-induced rat brain. Additionally, BYT significantly reduced c-Fos, Bax, and HSP72 positive cells in the peri-hematoma regions of the ICH-induced rat brain. These results suggest that BYT plays a neuroprotective role against ICH through suppression of inflammatory responses, apoptosis and cellular damage.

Swimming During Pregnancy Increases the Expression c-Fos and c-Jun in the Hippocampus of Rat Offspring

  • Sim, Young-Je;Kim, Jee-Youn;Kim, Chang-Ju
    • Korean Journal of Exercise Nutrition
    • /
    • v.13 no.1
    • /
    • pp.23-28
    • /
    • 2009
  • The expression of c-Fos and c-Jun represents neuronal activity and plays a crucial role in the shaping of the development of brain. During the late pregnancy, exercise is known to influence neuronal activity of offspring. In the present study, the effect of swimming during pregnancy on the expression of c-Fos and c-Jun in the CA1, CA2, CA3 regions, and the dentate gyrus of the hippocampus of rat offspring was investigated using immunohistochemistry. Pregnant rats in the swimming group were forced to swim for 10 min once a day from 15 days after pregnancy until delivery. The expression of c-Fos and c-Jun in the CA1, CA2, CA3 regions, and the dentate gyrus of the hippocampus of pups was significantly increased by maternal swimming during late pregnant period. The present results show that prenatal swimming may enhance the neuronal activity of pups and affect the neonatal brain development.

Localization of Immunoreactive Luteinizing Hormone in Aging Rat Brain

  • Kim, Kwang-Sik;Song, Ji-Hoon;Kang, Hee-Kyoung;Kang, Ji-Hoon;Park, Deok-Bae;Lee, Sung-Ho;Lee, Young-Ki
    • Development and Reproduction
    • /
    • v.14 no.3
    • /
    • pp.171-177
    • /
    • 2010
  • A recent report demonstrated that in human aging brain after menopause/andropause luteinizing hormone (LH) is localized in the cytoplasm of pyramidal neurons of hippocampus and a significant increase of LH is also detected in the cytoplasm of pyramidal neurons and neurofibrillary tangles of Alzheimer's disease brain compared to age-matched control brain. It was suggested that the decreased steroid hormone production and the resulting LH expression in the neurons vulnerable to Alzheimer's disease pathology may have some relevance to the development of Alzheimer's disease. It is, however, unclear whether the presence of LH in neurons of human aging and Alzheimer's disease brain is due to intracellular LH expression or to LH uptake from extracellular sources, since gonadotropins are known to cross the blood brain barrier. Moreover, there is no report by using the brain of experimental animal that LH is expressed in such neurons as found in the human brain. In the present study, we found that LH immunoreactivity is localized in the pyramidal neurons of cerebral cortex and hippocampus of 12 and 18 months old rats but can not detect any immunoreactivity for LH in the young adult (3-5 months old) rats. To confirm that these LH immunoreactivity results from de novo synthesis in the brain but not the uptake from extracellular space, we performed RT-PCR and found that mRNA for LH is detected in several regions of brain including cerebral cortex and hippocampus. These findings suggest us that LH expression in old rat brain may play an important role in aging process of rat brain.

Molecular Cloning and Characterization of Serine/Threonine Phosphatase from Rat Brain

  • Yoo, Byoung-Kwon;Lee, Sang-Bong;Shin, Chan-Young;Kim, Won-Ki;Kim, Sung-Jin;Kwang, Ho-Ko
    • Biomolecules & Therapeutics
    • /
    • v.8 no.2
    • /
    • pp.153-159
    • /
    • 2000
  • A novel serine/threonine protein phosphatase with EF-hand motif, which belongs to PPEF family was partially cloned from rat brain cDNA by employing RT-PCR method. The size of the amplified clone was 1.6kbp. The amplified DNA was subcloned into pGEM-T-Easy vector and the resulting plasmid was maned as pGEM-rPPEF2. The nucleuotide sequence is shared by 88% with that of mouse PPEF-2 cDNA, and the deduced amino acid sequence reveal 92% homology with that of mouse PPEF-2 cDNA. The N-terminal region of the cloned rat brain PPEF contains a putative phosphatase catalytic domain (PP domain) and the C-terminal region contains multiple $Ca^{2+}$ binding sites (EF region). The putative catalytic domin (PP) and the EF-hand motif (EF) regions were subcloned into pGEX4T-1 and were overexpressed in E. coli DH5 as glutathione-S-transferase (GST) fusion proteins. Expression of the desired fusion protein was identified by SDS-PAGE and also by immunoblot analysis using monoclonal antibody against GST. The recombinant proteins were purified by glutathione-agarose chromatography. This report is first to demonstrate the cloning of PPEF family from rat brain tissues. The clone reported here would be invaluable for the investigation of the role of this new type-phosphatase in rat brain.

  • PDF

Effect of Lead Intoxication on Thiamine Content and Transketolase Activity in the Brain of Rats

  • Ryu, Jae-Ryeong;Cheong, Jae-Hoon;Kim, Hye-Chung;Lee, Sang-Derk;Ko, Kwang-Ho
    • Biomolecules & Therapeutics
    • /
    • v.3 no.4
    • /
    • pp.288-293
    • /
    • 1995
  • In the present study, we tested whether lead intoxication could change the thiamine content and the activity of transketolase, one of thiamine-dependent enzymes, in the brain of rats. It was also tested whether administration of excessive thiamine can reverse the toxic manifestation of lead in the lead intoxicated rats. Four groups of Wistar rats were prepared: 1) control group, 2) lead treated group, 3) lead plus thiamine treated group and 4) thiamine deficient group. Each group of animals was divided into three subgroups based on ages: 3, 7 and 16 weeks. Lead concentration, thiamine content and the activity of transketolase in three different brain regions, i.e.,, telencephalon, brain stem and cerebellum, were measured in each group. Lead concentrations in brain regions of the lead treated group were significantly higher than those of the control group, and those of the lead plus thiamine treated group were significantly decreased from those of the lead treated group. Thiamine contents in the brain regions of the lead treated group were significantly lower than those of the control group, and those of the lead plus thiamine treated group were recovered back to those of the control group. Activities of transketolase in the brain regions of the lead treated group and the thiamine deficient group were significantly lower than those of the control group, while those of the lead plus thiamine treated group were higher than the lead treated group. The results from the present study suggest that neurotoxicity following lead intoxication in rats may be mediated, at least in part, through the changes of thiamine status and consequently thiamine-dependent biochemical reactions such as theactivity of transketolase.

  • PDF

The Effect of Saponins of Panax ginseng C.A. Meyer on Brain Aldehyde Dehydrogenase Activity of Ethanol Administered Rat (인삼사포인 성분이 에탄올을 투여한 쥐의 뇌 Aldehyde Dehydrogenase 활성에 미치는 영향)

  • 이영돈;주충노
    • Journal of Ginseng Research
    • /
    • v.18 no.1
    • /
    • pp.1-9
    • /
    • 1994
  • Sprague-Dawley rats were given freely with 15% ethanol (control) and 15% ethanol containing (1) 0.1% ginseng saponin, (2) 0.02% ginsenoside $Rb_1$, and (3) $Rg_1$ (tests) instead of water for 7 days and aldehyde dehydrogenase (ALDH) and monoamine oxidase (MAO) activity in different regions of brain were examined. In control group, total ALDH activity with indoleacetaldehyde and acetaldehyde as substrate in all different regions was lower than that of normal group except in the hippocampus. The inhibitory effect on the activity was prominent in the corpus striatum and was not in the hippocampus. However, low-$K_m$ ALDH activity in all different regions was much lower than that of normal group. A considerable decrease in mitochondria ALDH activity in cerebellum and striatum was also observed in control group. In test groups total, low-$K_m$, and mitochondria AkDH activities in all different regions were higher than those in control group. Although ALDH activity in the striatum of test group was higher than control group, it was relatively depressed as compared with normal. There was not found a remarkable difference in extent of stimulating effect on the AkDH activity according to the ginseng saponin components. When biogenic aldehydes were used as substrate, ALDH activity with 3,4-dihydroxy-phenylacetaldehyde (DOPAL) in all brain regions of control group was lower than that using 5-hydroxy-indoleacetaldehyde (HIAL) and 3,4-dihydroxyphenylglycolaldehyde (NORAL) as substrate. In control group, ALDH activity with biogenic aldehydes above mentioned was markedly inhibited in the striatum contrary to other regions. The higher ALDH activity with biogenic aldehydes in test group than in control was found in the striatum, cerebrum, and cerebellum. MAO activity in the cerebellum was inhibited in control group and slightly increased in test group. The results of present study suggest that the corpus striatum is significantly affected by ethanol exposure while the hippocampus is not and that ginseng saponin fraction and ginsenosid es might have a preventive effect against depression of brain ALDH activity by chronic administration of ethanol.

  • PDF

Region- and Neuronal Phenotype-specific Expression of NELL2 in the Adult Rat Brain

  • Jeong, Jin Kwon;Kim, Han Rae;Hwang, Seong Mun;Park, Jeong Woo;Lee, Byung Ju
    • Molecules and Cells
    • /
    • v.26 no.2
    • /
    • pp.186-192
    • /
    • 2008
  • NELL2, a neural tissue-enriched protein, is produced in the embryo, and postembryonically in the mammalian brain, with a broad distribution. Although its synthesis is required for neuronal differentiation in chicks, not much is known about its function in the adult mammalian brain. We investigated the distribution of NELL2 in various regions of the adult rat brain to study its potential functions in brain physiology. Consistent with previous reports, NELL2-immunoreactivity (ir) was found in the cytoplasm of neurons, but not in glial fibrillary acidic protein (GFAP)-positive glial cells. The highest levels of NELL2 were detected in the hippocampus and the cerebellum. Interestingly, in the cerebellar cortex NELL2 was observed only in the GABAergic Purkinje cells not in the excitatory granular cells. In contrast, it was found mainly in the hippocampal dentate gyrus and pyramidal cell layer that contains mainly glutamatergic neurons. In the dentate gyrus, NELL2 was not detected in the GFAP-positive neural precursor cells, but was generally present in mature neurons of the subgranular zone, suggesting a role in this region restricted to mature neurons.