• Title/Summary/Keyword: rare sugars

Search Result 9, Processing Time 0.024 seconds

Bioconversion of Rare Sugars by Isomerases and Epimerases from Microorganisms (미생물 유래 당질관련 이성화효소 및 에피머효소를 이용한 희소당 생물전환)

  • Kim, Yeong-Su;Kim, Sang Jin;Kang, Dong Wook;Park, Chang-Su
    • Journal of Life Science
    • /
    • v.28 no.12
    • /
    • pp.1545-1553
    • /
    • 2018
  • The International Society of Rare Sugars (ISRS) defines rare sugars as monosaccharides and their derivatives that rarely occur in nature. Rare sugars have recently received much attention because of their many uses including low-calorie sweeteners, bulking agents, and antioxidants, and their various applications including as immunosuppressants in allogeneic rat liver transplantation, as potential inhibitors of various glycosidases and microbial growth, in ischemia-reperfusion injury repair in the rat liver, and in segmented neutrophil production without detrimental clinical effects. Because they rarely exist in nature, the production of rare sugars has been regarded as one of the most important research areas and, generally, they are produced by chemical synthesis. However, the production of rare sugars by bioconversion using enzymes from microorganisms has been receiving increased attention as an environmentally friendly alternative production method. In particular, D-allulose, D-allose, and D-tagatose are of interest as low-calorie sweeteners in various industries. To date, D-tagatose 3-epimerase, D-psicose 3-epimerase, and D-allulose 3-epimerase have been reported as D-allulose bioconversion enzymes, and L-rhamnose isomerase, Galactose 6-phosphate isomerase, and Ribose 5-phosphate isomerase have been identified as D-allose production enzymes. Elsewhere, D-tagatose has been produced by L-arabinose isomerase from various microorganisms. In this study, we report the production of D-allulose, D-allose, and D-tagatose by microorganism enzymes.

Metabolic profiling reveals an increase in stress-related metabolites in Arabidopsis thaliana exposed to honeybees

  • Baek, Seung-A;Kim, Kil Won;Kim, Ja Ock;Kim, Tae Jin;Ahn, Soon Kil;Choi, Jaehyuk;Kim, Jinho;Ahn, Jaegyoon;Kim, Jae Kwang
    • Journal of Applied Biological Chemistry
    • /
    • v.64 no.2
    • /
    • pp.141-151
    • /
    • 2021
  • Insects affect crop harvest yield and quality, making plant response mechanisms to insect herbivores a heavily studied topic. However, analysis of plant responses to honeybees is rare. In this study, comprehensive metabolic profiling of Arabidopsis thaliana exposed to honeybees was performed to investigate which metabolites were changed by the insect. A total of 85 metabolites-including chlorophylls, carotenoids, glucosinolates, policosanols, tocopherols, phytosterols, β-amyrin, amino acids, organic acids, sugars, and starch-were identified using high performance liquid chromatography, gas chromatography-mass spectrometry, and gas chromatography-time-of-flight mass spectrometry. The metabolite profiling analysis of Arabidopsis exposed to honeybees showed higher levels of stress-related metabolites. The levels of glucosinolates (glucoraphanin, 4-methoxyglucobrassicin), policosanols (eicosanol, docosanol, tricosanol, tetracosanol), tocopherols (β-tocopherol, γ-tocopherol), putrescine, lysine, and sugars (arabinose, fructose, glucose, mannitol, mannose, raffinose) in Arabidopsis exposed to honeybees were higher than those in unexposed Arabidopsis. Glucosinolates act as defensive compounds against herbivores; policosanols are components of plant waxes; tocopherols act as an antioxidant; and putrescine, lysine, and sugars contribute to stress regulation. Our results suggest that Arabidopsis perceives honeybees as a stress and changes its metabolites to overcome the stress. This is the first step to determining how Arabidopsis reacts to exposure to honeybees.

Characterization of Ribose-5-Phosphate Isomerase B from Newly Isolated Strain Ochrobactrum sp. CSL1 Producing ʟ-Rhamnulose from ʟ-Rhamnose

  • Shen, Min;Ju, Xin;Xu, Xinqi;Yao, Xuemei;Li, Liangzhi;Chen, Jiajia;Hu, Cuiying;Fu, Jiaolong;Yan, Lishi
    • Journal of Microbiology and Biotechnology
    • /
    • v.28 no.7
    • /
    • pp.1122-1132
    • /
    • 2018
  • In this study, we attempted to find new and efficient microbial enzymes for producing rare sugars. A ribose-5-phosphate isomerase B (OsRpiB) was cloned, overexpressed, and preliminarily purified successfully from a newly screened Ochrobactrum sp. CSL1, which could catalyze the isomerization reaction of rare sugars. A study of its substrate specificity showed that the cloned isomerase (OsRpiB) could effectively catalyze the conversion of $\text\tiny{L}$-rhamnose to $\text\tiny{L}$-rhamnulose, which was unconventional for RpiB. The optimal reaction conditions ($50^{\circ}C$, pH 8.0, and 1 mM $Ca^{2+}$) were obtained to maximize the potential of OsRpiB in preparing $\text\tiny{L}$-rhamnulose. The catalytic properties of OsRpiB, including $K_m$, $k_{cat}$, and catalytic efficiency ($k_{cat}/K_m$), were determined as 43.47 mM, $129.4sec^{-1}$, and 2.98 mM/sec. The highest conversion rate of $\text\tiny{L}$-rhamnose under the optimized conditions by OsRpiB could reach 26% after 4.5 h. To the best of our knowledge, this is the first successful attempt of the novel biotransformation of $\text\tiny{L}$-rhamnose to $\text\tiny{L}$-rhamnulose by OsRpiB biocatalysis.

Market and trend of alternative sweeteners (저칼로리 저감미도 대체감미료 시장 및 동향)

  • Kim, Yang Hee;Kim, Seong-Bo;Kim, Su Jin;Park, Seung-Won
    • Food Science and Industry
    • /
    • v.49 no.3
    • /
    • pp.17-28
    • /
    • 2016
  • The concerns over obesity and obesity-related health problems are increasing as many consumers relate these health problems with sugar. The demand for sugar reduction is also rising and regulatory movement by governments including Korea is driven to reflect such demand. For the past decades, there have been diverse development and marketing of various sweeteners to substitute sucrose and high fructose corn syrup. Low caloric alternative sweeteners can be divided into high intensity sweeteners that have greater sweetness potency compared to sucrose, and low intensity sweeteners such as polyols, oligosaccharides and rare sugars that have less sweetness potency. This paper discusses representative low caloric alternative sweeteners, their market and trend.

Characterization of Brewing Yeast Expressing Glucoamylase Selected by Rare Mating. (Rare Mating에 의한 양초효모에서의 glucoamylase 발현 균주 HCS 선별 및 특성)

  • 최병주;장금일;김광엽
    • Microbiology and Biotechnology Letters
    • /
    • v.29 no.4
    • /
    • pp.212-220
    • /
    • 2001
  • Rare mating was used to select a respiratory deficient mutant of Saccharomyces cerevisiae HDC52 strain. Glucoamylase gene of S. diastaticus K114 was developed into the RD mutant which could uptake maximum amount of non-fermentable sugars through the expression of glu- coamplyase gene and the fermentation characteristics of the developed strain HCS were investigated. The size of HCS yeast and HBD52 yeast strain were 13 $\mu\textrm{m}$ and 10$\mu\textrm{m}$ respectively. HCS strain which can uptake maximum amount of non-fermentable sugar through the expression of glucoamylase gene was developed. By karyotype anal- ysis. HCS stain but not RD mutant HBC52 showed a band of 1150 kb chromosome DNA This band should include glcoamylase gene from Saccharomyces diataticus K114 THis strain has glucoamylase which can degrade starch By transduction and contrnuance of glucoamylase gene HCS strain gegraded strach and formed halo. Also, HCS strain maintained the character after 50 generations. Glucoamylase activities of Saccharomyces diastaticus K114 and HCS yeast strains are 9.5 and 2.7~3.4(unit/ml) HCS and HBC52 strain showed similar sugar fermentation patterns and low flocculation In spore and film forming test, HCS and HBC52 strain formed neither spores nor films. In the limit fermentation test, HBC52 strain showed fermentation level of 68% and HCS strain showed 76~78% As the limit attenuation of HBC52 and HCS were ($2.00^{\circ}$P) and ($0.7~0.93^{\circ}$P) This study demon- strates and HCS strain may be used for low carbohydrate beer fermentation.

  • PDF

Effect of Seed Position on Seed Size, Contents of Ginsenosides, Free Sugars and Fatty Acids in Panax ginseng (종자의 착생위치가 인삼종자의 크기, 사포닌, 유리당 및 지방산함량에 미치는 영향)

  • 이종철;안대진;변정수;장진규;황건중
    • KOREAN JOURNAL OF CROP SCIENCE
    • /
    • v.32 no.3
    • /
    • pp.330-335
    • /
    • 1987
  • This study was carried out to know the effect of seed position on the size, contents of ginsenosides, free sugars, and fatty acids in ginseng seeds. Seed positions were classified by the three portions as center, middle and border in a seed cluster. Seed weight at center was light remarkably in comparison with those of seeds of at border and middle. The weight of embryo plus endosperm was in same tendency as seed weight. Percentage of single-seeded berry was smaller than that of the double-seeded, and the triple-seeded was rare. The percentage of the single-seeded increased from the border to the center. Size of the single -seeded seed was smaller than that of the double- seeded. Rate of dehiscence did not differ among different seed positions. The major ginsenosides in seed were Re, Rb$_1$, and Rb$_2$. The contents of Rb$_2$ and total saponin were highest in border, least in center, but reversed in Re and Rd. Major free sugars in seed were sucrose and glucose. The sucrose content was gradually decreased according to the seed position from border to center. Major fatty acids in the seed were oleic and linoleic acid. Contents of palmitic and linolenic acid were different according to the seed position.

  • PDF

Purification of Antifungal Antibiotic NH-B1 from Actinomycete NH 50 Antagonistic to Plant Pathogenic Fungi (식물병원진균에 길항효과가 있는 방선균 균주 NH50에서 항진균성 항생물질 NH-B1의 순수 분리)

  • 김현겸;김범석;문석식;황병국
    • Korean Journal Plant Pathology
    • /
    • v.14 no.3
    • /
    • pp.191-202
    • /
    • 1998
  • About 300 actinomycetes were isolated from two forest and one sea-shore soil and tested for inhibitory effects on mycelial growth of six plant pathogenic fungi Magnaporthe grisea, Alternaria mali, Colletotrichum gloeosporioides, Phytophthora capsici, Fusarium oxysporum f. sp. cucumerinum, and Rhizoctonia solani. Among 300 actinomycetes tested, only 16 actinomycetes showed the antifungal activity against the test fungi. Isolate NH 50 was selected for production and purification of antifungal antibiotic substances. Actinomycete isolate NH 50 displayed the broad antifungal spectra against 11 plant pathogenic fungi. To identify actinomycete isolate NH 50, cultural characteristics on various agar media, diaminopimelic acid type, and morphological characteristics by scanning electron microscopy were examined. As a result, actinomycete isolate NH 50 was classified as a rare actinomycete that had LL-DAP type and did not produce spores. After incubation of isolate NH 50 in yeast extract-malt extract-dextrose broth, antifungal compound NH-B1 that inhibited mycelial growth of some plant pathogenic fungi was purified from the methanol eluates of XAD-16 resins by a series of purification procedures, i.e., silica gel flash chromatography, C18 flash chromatography, Sephadex LH-20 column chromatography, silica gel medium pressure liquid chromatography (MPLC), C18 MPLC, and high pressure liquid chromatography (HPLC). UV spectrum and 1HNMR spectrum of antifungal compound NH-B1 dissolved in methanol were examined. The antibiotic NH-B1 showed the major peaks at 230 and 271.2nm. Based on the data of 1H-NMR spectrum, NH-B1 was confirmed to be an extremely complex polymer of sugars called polysaccharides. The antibiotic NH-B1 showed strong antifungal activity against Alternaria solani and Cercospora kikuchi, but weak activity against M. grisea.

  • PDF

Expression of manB Gene from Escherichia coli in Lactococcus lactis and Characterization of Its Bifunctional Enzyme, Phosphomannomutase

  • Li, Ling;Kim, Seul Ah;Fang, Ruosi;Han, Nam Soo
    • Journal of Microbiology and Biotechnology
    • /
    • v.28 no.8
    • /
    • pp.1293-1298
    • /
    • 2018
  • Phosphomannomutase (ManB) converts mannose-6-phosphate (M-6-P) to mannose-1-phosphate (M-1-P), which is a key metabolic precursor for the production of GDP-D-mannose used for production of glycoconjugates and post-translational modification of proteins. The aim of this study was to express the manB gene from Escherichia coli in Lactococcus lactis subsp. cremoris NZ9000 and to characterize the encoded enzyme. The manB gene from E. coli K12, of 1,371 bp and encoding 457 amino acids (52 kDa), was cloned and overexpressed in L. lactis NZ9000 using the nisin-controlled expression system. The enzyme was purified by Ni-NTA column chromatography and exhibited a specific activity of 5.34 units/mg, significantly higher than that of other previously reported ManB enzymes. The pH and temperature optima were 8.0 and $50^{\circ}C$, respectively. Interestingly, the ManB used in this study had two substrate specificity for both mannose-1-phosphate and glucose-1-phosphate, and the specific activity for glucose-1-phosphate was 3.76 units/mg showing 70% relative activity to that of mannose-1-phosphate. This is the first study on heterologous expression and characterization of ManB in lactic acid bacteria. The ManB expression system constructed in this study canbe used to synthesize rare sugars or glycoconjugates.