DOI QR코드

DOI QR Code

Market and trend of alternative sweeteners

저칼로리 저감미도 대체감미료 시장 및 동향

  • Kim, Yang Hee (CJ CheilJedang, Life Ingredient and Material Research Institute) ;
  • Kim, Seong-Bo (CJ CheilJedang, Life Ingredient and Material Research Institute) ;
  • Kim, Su Jin (CJ CheilJedang, Life Ingredient and Material Research Institute) ;
  • Park, Seung-Won (CJ CheilJedang, Life Ingredient and Material Research Institute)
  • Published : 2016.09.30

Abstract

The concerns over obesity and obesity-related health problems are increasing as many consumers relate these health problems with sugar. The demand for sugar reduction is also rising and regulatory movement by governments including Korea is driven to reflect such demand. For the past decades, there have been diverse development and marketing of various sweeteners to substitute sucrose and high fructose corn syrup. Low caloric alternative sweeteners can be divided into high intensity sweeteners that have greater sweetness potency compared to sucrose, and low intensity sweeteners such as polyols, oligosaccharides and rare sugars that have less sweetness potency. This paper discusses representative low caloric alternative sweeteners, their market and trend.

Keywords

References

  1. WHO. Healthy diet. Available from: http://www.who.int/mediacentre/factsheets/fs394/en/. Accessed Sep. 1, 2016
  2. 식품의약품안전처. 당류 저감 종합계획 (2016)
  3. Sugar and Sweeteners Yearbook Tables. Available from: http://www.ers.usda.gov/data-products/sugar-and-sweeteners-yearbook-tables.aspx. Accessed Sep. 1, 2016
  4. Market and Markets. Sugar substitute market. (2014)
  5. Helen M. Sweeteners and Sugar Alternatives in Food Technology. Wiley-Blackwell, Oxford (2006)
  6. Koh ES, Lee TH, Lee DY, Kim HJ, Ryu YW, Seo JH. Scale-up of erythritol production by an osmophilic mutant of Candida magnoliae. Biotechnol. Lett. 25: 2103-2105 (2003) https://doi.org/10.1023/B:BILE.0000007076.64338.ce
  7. Yang SW, Park JB, Han NSR, Y. W., Seon JH. Production of erythritol from glucose by an osmophilic mutant of Candida magnoliae. Biotechnol. Lett. 21: 887-890 (1999) https://doi.org/10.1023/A:1005566420982
  8. Jeya ML, K. M., Tiwari MK, Kim JS, Gunasekaran P, Kim SY, Kim IW, Lee JK. Isolation of a novel high erythritol-producing Pseudozyma tsukubaensis and scale-up of erythritol fermentation to industrial level. Appl. Microbiol. Biotechnol. 83: 225-231 (2009) https://doi.org/10.1007/s00253-009-1871-5
  9. Moon HJ, Jeya M, Kim IW, Lee JK. Biotechnological production of erythritol and its applications. Appl. Microbiol. Biotechnol. 86: 1017-1025 (2010) https://doi.org/10.1007/s00253-010-2496-4
  10. Munro IC, Bernt WO, Borzelleca JF, Flamm G, Lynch BS, Kennepohl E, Bar EA, Modderman J. Erythritol: an interpretive summary of biochemical, metabolic, toxicological and clinical data. Food Chem. Toxicol. 36: 1139-1174 (1998) https://doi.org/10.1016/S0278-6915(98)00091-X
  11. Ishikawa M, Miyashita M, Kawashima Y, Nakamura T, Saitou N, Modderman J. Effects of oral administration of erythritol on patients with diabetes. Regul. Toxicol. Pharmacol. 24: 303-308 (1996) https://doi.org/10.1006/rtph.1996.0112
  12. Byun SH, Lee CH. Studies on physicochemical properties of erythritol, substitude sugar. Korean J. Food Sci. Technol. 29: 1089-1093 (1997)
  13. Malaja AJ, Hamalainen L, US. Process for making xylitol us Patent 4,008. 285 (1977)
  14. Park YC, Oh EJ, Jo JH, Jin YS, Seo JH. Recent advances in biological production of sugar alcohols. Curr. Opin. Biotechnol. 37: 105-113 (2016) https://doi.org/10.1016/j.copbio.2015.11.006
  15. Livesey G. Health potential of polyols as sugar replacers, with emphasis on low glycaemic properties. Nutri. Res. Rev. 16: 163-191 (2003)
  16. Natah SS, Hussien KR, Tuominen JA, Koivisto VA. Metabolic response to lactitol and xylitol in healthy men. Am. J. Clin. Nutr. 65: 947-950 (1997) https://doi.org/10.1093/ajcn/65.4.947
  17. Makinen KK. Sugar alcohol sweeteners as alternatives to sugar with special consideration of xylitol. Med. Princ. Pract. 20: 303-320 (2011) https://doi.org/10.1159/000324534
  18. Grabitske HA, Slavin JL. Gastrointestinal effects of low-digestible carbohydrates. Crit. Rev. Food Sci. Nutr. 49: 327-360 (2009) https://doi.org/10.1080/10408390802067126
  19. Grembecka M. Sugar alcohol-their role in the modern world of sweeteners: a review. Eur. Food Res. Technol. 241 (2015)
  20. Mussatto SI, Mancilha IM. Non-digestible oligosaccharides: a review. Carbohydrate Polymers 68: 587-597 (2007) https://doi.org/10.1016/j.carbpol.2006.12.011
  21. Kang OL, Ghani M, Hassan O, Rahmati S, Ramli N. Novel agaro-oligosaccharide production through enzymatic hydrolysis: physicochemical properties and antioxidant activities. Food Hydrocolloid. 42: 231-316 (2014) https://doi.org/10.1016/j.foodhyd.2014.06.010
  22. Crittenden RG, Playne MJ. Production, properties and applications of food-grade oligosaccharides. Trends Food Sci. Tech. 7: 353-361 (1996) https://doi.org/10.1016/S0924-2244(96)10038-8
  23. Meyer TSM, Miguel ASM, Fernandez DER, Ortiz GMD. Biotechnological production of oligosaccharides-applications in the food industry. Food Produc. Indust. 2: 25-78 (2015)
  24. Kaneko T, Kohmoto T, Kikuchi H, Shiota M, Iino H, Mitsuoka T. Effects of isomaltooligosaccharides with different degrees of polymerization on human faecal bifidobacteria. Biosci. Biotechnol. Biochem. 58: 2288-2290 (1994) https://doi.org/10.1271/bbb.58.2288
  25. Oku T, Nakamura S. Digestion, absorption, fermentation, and metabolism of functional sugar substitutes and their available energy. Pure Appl. Chem. 74: 1253-1261 (2002) https://doi.org/10.1351/pac200274071253
  26. Granstrom TB, Takata G, Tokuda M, Izumori K. Izumoring: a novel and complete strategy for bioproduction of rare sugars. J. Biosci. Bioeng. 97: 89-94 (2004) https://doi.org/10.1016/S1389-1723(04)70173-5
  27. Beadle JR, Saunders JP, Wajda TJ. Process for manufacturing tagatose. European Patent 0518874 (1996)
  28. Yang SJ, Kim YH, Kim SB, Park SW, Park IH, Kim MH, Lee YM. Manufacturing method for tagatose. Korea Patent: 10-1550796 (2015)
  29. Oh DK, Lee SH, Hong SH. A production method of tagatose from fructose by combinatorial enzyme reactions and composition for production of tagatose. Korea Patent: 10-1480422 (2015)
  30. 식품의약품안전처. 기능성원료 인정 (제2011-37호). (2011)
  31. Ensor M, Williams J, Smith R, Banfield A, Lodder RA. Effects of three low-doses of D-tagatose on glycemic control over six months in subjects with mild type 2 diabetes mellitus under control with diet and exercise. J. Endocrinol. Diabetes Obes. 2: 1057 (2014)
  32. Koh JH, Choi SH, Park SW, Choi NJ, Kim YH, Kim SH. Synbiotic impact of tagatose on viability of Lactobacillus rhamnosus strain GG mediated by the phosphotransferase system (PTS). Food Microbiol. 366: 7-13 (2013)
  33. Lim J. Consumer testing report (2011)
  34. Lee YM, Kang MW, Kim YJ, Kim SB, Park SW. Low caloric coffee mix composition prepared by using D-tagatose. Korean Patent 10-1366404 (2014)
  35. 식품의약품안전처, 제2015-6호 (2015).
  36. Takeshita K, Suga A, Takada G, Izumori K. Mass production of D-psicose from D-fructose by a continuous bioreactor system using immobilized D-tagatose 3-epimerase. Biochem. Eng. 90: 453-455 (2000)
  37. Kim HJ, Hyun EK, Kim YS, Lee YJ, Oh DK. Characterization of an Agrobacterium tumefaciens D-psicose 3-epimerase that converts D-fructose to D-psicose. Appl. Environ. Microb. 72: 981-985 (2006) https://doi.org/10.1128/AEM.72.2.981-985.2006
  38. Mu W, Chu F, Xing Q, Yu S, Zhou L, Jiang B. Cloning, expression, and characterization of a D-psicose 3-Epimerase from Clostridium cellulolyticum H10. J. Agri. Food. Chem. 59: 7785-7792 (2011) https://doi.org/10.1021/jf201356q
  39. Zhu Y, Men Y, Bai W, Li X, Zhang L, Sun Y, Ma Y. Overexpression of D-psicose 3-epimerase from Ruminococcus sp. in Escherichia coli and its potential application in D-psicose production. Biot. Lett. 34: 1901-1906 (2012) https://doi.org/10.1007/s10529-012-0986-4
  40. Mu W, Zhang W, Fang D, Zhou L, Jiang B, Zhang T. Characterization of a D-psicose-producing enzyme, D-psicose 3-epimerase, from Clostridium sp. Biot. Lett. 35: 1481-1486 (2013) https://doi.org/10.1007/s10529-013-1230-6
  41. Frost & Sullivan. Market Research (2016)
  42. Iida T, Kishimoto Y, Yoshikawa Y, Hayashi N, Okuma K, Tohi M, Yagi K, Matsuo T, Izumori K. Acute D-psicose administration decreases the glycemic responses to an oral maltodextrin tolerance test in normal adults. J. Nutr. Sci. Vitaminol. 54: 511-514 (2008) https://doi.org/10.3177/jnsv.54.511
  43. Iida T, Hayashi N, Yamada T, Yoshikawa Y, Miyazato S, Kishimoto Y, Okuma K, Tokuda M, Izumori K. Failure of D-psicose absorbed in the small intestine to metabolize into energy and its low large intestinal fermentability in humans. Metab. Clin. Exp. 59: 206-214 (2010) https://doi.org/10.1016/j.metabol.2009.07.018
  44. Han Y, Han HJ, Kim AhC, J. Y;l, Park YB, Jung UJ, Choi MS. D-allulose supplementation normalized the body weight and fat-pad mass in diet-induced obese mice via the regulation of lipid metabolism under isocaloric fed condition. Mol. Nutr. Food Res. 60: 1695-1706 (2016) https://doi.org/10.1002/mnfr.201500771