• Title/Summary/Keyword: rare earth element

Search Result 190, Processing Time 0.027 seconds

Evaluation of Effects of Rare Earth Element and Cooling Rate on the Eutectic Reaction of Flake Graphite Cast Irons by Cooling Curve Analysis (냉각곡선 분석을 통한 편상흑연주철의 공정반응에 미치는 희토류원소 및 냉각속도의 영향 평가)

  • Lee, Sang-Hwan;Park, Seung-Yeon;Lee, Sang-Mok;Kim, Myung-Ho
    • Journal of Korea Foundry Society
    • /
    • v.33 no.1
    • /
    • pp.13-21
    • /
    • 2013
  • The effects of rare earth element (R.E.) and cooling rate on the eutectic reaction of flake graphite cast irons were studied by combined analysis of macro/micro-structure and cooling curve data. The correlation between eutectic reaction parameter and macro/micro-structure was systematically investigated. Two sets of chemical compositions with the different addition of R.E. were designed to cast. Three types of molds for cylindrical specimens with the different diameters were prepared to analyze cooling rate effect. The difference between undercooling temperature and cementite eutectic temperature (${\Delta}T_1=T_{U}-T_{E,C}$), which is increased by adding R.E. and decreased by increasing cooling rate, is considered to be a suitable eutectic reaction parameter for predicting graphite morphology. According to the criterion, A-type graphite is mainly suggested to form for ${\Delta}T_1$ over $20^{\circ}C$. Eutectic reaction time (${\Delta}t$), which is decreased by adding R.E. or increasing cooling rate, is a suitable eutectic reaction parameter for predicting eutectic cell size. Eutectic cell size is found to decrease in a proportion to the decrease of ${\Delta}t$.

Geochemical Implication of Rare Earth Element from Yellow sand (Asian Dust) at Daejeon Area, Korea: A Preliminary Study for Clarifying Source Area of Yellow Sand (대전지역 황사(아시아 먼지)내 희토류원소 분포도의 지구화학적 특성-근원지 규명을 위한 초기연구)

  • Lee, Seung-Gu;Youm, Seung-Jun
    • The Journal of the Petrological Society of Korea
    • /
    • v.17 no.1
    • /
    • pp.44-50
    • /
    • 2008
  • A geochemical technique based on rare earth element geochemistry was used to clarity the source of the Asian dust (Yellow sand) in the Daejeon area. The Asian dusts were collected 4 times during 31th March- 2nd April and 25th May-27th May 2007. The Yellow sand shows PAAS (Post Archean Australian Shale)-normalized REE pattern of the flattened LREE and slightly depleted LREE without Eu anomaly, whereas the Daejeon soil has slightly enriched LREE and depleted HREE with negative Eu anomaly. Our results show that REE patterns of the Asian dust are LREE-flattened similar to those of the sediment from the south-eastern part of Ordos desert. This suggests that Asian dust in the Daejeon area might be derived from the south-eastern part of Ordos desert.

Microstructure Related to the Growth of Rare-earth Mineral in the Eoraesan Area, Chungju, Korea (충주 어래산 지역에서 희토류 광물의 성장과 관련된 미구조)

  • Kang, Ji-Hoon
    • The Journal of the Petrological Society of Korea
    • /
    • v.28 no.2
    • /
    • pp.129-141
    • /
    • 2019
  • The Eoraesan area, Chungju, which is located in the northwestern part of Ogcheon Metamorphic Zone, Korea, mainly consists of the Neoproterozoic Gyemyeongsan Formation and the Mesozoic igneous rocks which intruded it. The metaacidic rocks (MAR) of the Gyemyeongsan Formation show a maximum radioactive value, and the Early Jurassic biotite granite is regionally distributed in this area. In this paper is researched the microstructure related to the growth of rare-earth mineral of allanite in the MAR, and is considered the source and occurrence time of rare-earth element (REE) mineralization. The MAR is mainly composed of alkalic feldspar (mainly microcline), quartz, iron-oxidizing mineral, biotite, muscovite, plagioclase, hornblende, allanite, zircon, epidote, fluorite, apatite, garnet, (clino)zoisite etc. The radioactive elements contained in the allanite cause a dark brown hale in the surrounding biotite, and the allinte also occurs as aggregate along the regional foliation. The deflection of regional foliation and the strain shadows, which are common to the pre-tectonic porphyroblast grown before the formation of regional foliation, can't be observed around most allanites (aggregates). The grain size and orientation of ironoxidizing mineral included in the allanite aggregate are the same as those in the matrix. It is recognized the hydrothermal conversion of hornblende to biotite due to the intrusion of igneous rock, and the secondary biotite occurs and contacts with allanite, zircon, epidote etc. These microstructures indicate that the rare-earth mineral of allanite (aggregate) grew by the hydrothermal alteration due to the intrusion of igneous rock after the formation of regional foliation. It is considered that the REE mineralization is closely related to the intrusion of Early Jurassic biotite granite which is regionally distributed in this area.

A Role of Standard Material in Rare Earth Element Analysis by ICP-MS (ICP-MS를 이용한 희토류원소 분석시 표준시료의 선택이 미치는 영향)

  • Lee Seung-Gu;Kim Kun-Han;Song Yong Sun;Kim Yongje
    • The Journal of the Petrological Society of Korea
    • /
    • v.14 no.4 s.42
    • /
    • pp.237-250
    • /
    • 2005
  • In order to clarify the effect of standard rock material in the chemical analysis of rare earth element abundance with ICP-MS, we measured rare earth element abundance of KIGAM granite standard rock material (KG-1), USGS granite standard rock material (G-2), GSJ granite standard rock materials (JG-1a and JG-2). In REE analysis, we used conventional calibration standard solutions, KG-1, JG-1a, JG-2 and G-2 as standard material, respectively. Chondrite-normalized LREE patterns of low granite standard material correspond well each other in the recommended value and the estimated value regardless of a kind of standard rock. However, the HREE patterns of the estimated value based on G-2 or JG-2 and the recommended value are different from each other. Such difference may be due to the wrong recommended value or a specific geochemical properly of the standard rock material itself, The chondrite-normalized REE patterns of four standard rock materials estimated on the basis of KG-1 or JG-1 a show little deviation compared to the those of the recommended values. This suggests that KG-1 and JG-1a may be a optimum standard material for granitoids.

Variation of Rare Earth Element Patterns during Rock Weathering and Ceramic Processes: A Preliminary Study for Application in Soil Chemistry and Archaeology (암석의 풍화과정 및 도자기 제조과정에 따른 희토류원소 분포도의 변화: 토양화학 및 고고학적 응용을 위한 기초연구)

  • Lee, Seung-Gu;Kim, Kun-Han;Kim, Jin-Kwan
    • The Journal of the Petrological Society of Korea
    • /
    • v.17 no.3
    • /
    • pp.133-143
    • /
    • 2008
  • On the basis of chemical composition of granite, gneiss and their weathering products, in this paper, rare earth elements (REEs) was estimated as tracer for clarifying a geochemical variance of earth surface material during weathering process. The chemical composition of clay, clay ware and pottery also were measured for testifying usefulness of REE geochemistry in clarifying the source material of pottery. It was observed that there was no systematic variation of chemical composition among source rock, weathered rock and soil during weathering process. The chemical composition of clay, clay ware and pottery also did not show systematic variation by baking pottery. However, PAAS (Post Archean Australian Shale)-normalized REE patterns of rock-weathered rock-soil and clay-clay ware-pottery are similar regardless of weathering process or ceramic art. Our results confirm that REE geochemistry is powerful tool for clarifying the source materials of surface sediment or archaeological ceramic products.

X-Ray Exposure Reduction using Rare Earth Intensifying Screen for Chest Roentgenology (흉부(胸部) X선촬영(X線撮影)에 있어서 희토류증감지(稀土類增感紙) 사용(使用)에 따른 피폭선량(被曝線量) 경감(輕減)에 관한 검토(檢討))

  • Huh, Joon;Kim, Chang-Kyun;Kang, Hong-Seok;Lee, Sun-Sook;Song, Jae-Kwan;Lee, Sang-Suk
    • Journal of radiological science and technology
    • /
    • v.4 no.1
    • /
    • pp.23-30
    • /
    • 1981
  • In chest x-ray radiography, intensifying screen is used to the exposed dose of patients. Recently, newer materials-rere earth elements-are used in intensifying screen. Authors studied the aspects of chest x-ray radiogram and obtained the results that rare earth element intensifying screen did not harm in detail and could reduce the exposed dose of patient by 1/24 and below.

  • PDF

Fluorescence Signal Analysis of Mixed Rare Earth Elements by Nonlinear Fitting Method (비선형 Fitting법에 의한 희토류 혼합물의 형광신호 분석)

  • Kim, Dukhyeon;Shin, Jangsoo;Song, Kyuseok;Cha, Hyungki;Lee, Jongmin
    • Analytical Science and Technology
    • /
    • v.8 no.1
    • /
    • pp.41-45
    • /
    • 1995
  • To analyze mixed rare earth elements quantitatively a nonlinear fitting method was applied to laser induced fluorescence signals. Mixed flourescence signal of two elements, Sm and Eu were resolved independently and determined the concentration of these two elements simultaneously. It was found that detection limit for each element in the mixture was sub-ppb level which was the same as that of the single element sample. Additionally it was found that lifetimes of Sm and Eu extracted from the nonlinear fitting method is the same as in the single element cases.

  • PDF

Study of Synthesis and Property of Eu-PEG Phase Change Luminescent Materials (Eu-PEG로 구성된 상변환 발광재료의 합성 및 물성에 대한 연구)

  • Gu, Xiao-Hua;Xi, Peng;Shen, Xin-Yuan;Cheng, Bo-Wen
    • Polymer(Korea)
    • /
    • v.32 no.4
    • /
    • pp.305-312
    • /
    • 2008
  • A novel TPC-PEG-TPC with active end-groups was obtained from the end-groups of polyethylene glycol (PEG) modified by terephthaloyl chloride (TPC). These active end-groups can link up with a rare earth ion, which is a luminescent center of a rare earth fluorescent complex. Complexes of Eu-PEG with novel ligands (TPC-PEG-PTC) were synthesized by the coordination of the active reactant (as the first ligand) and phenanthroline (as the second ligand) with $Eu^{3+}$.IR, $^1H$-NMR, element analysis, DSC, WAXD, fluorescent spectroscopy, TGA, and SEM were used to characterize the structure and properties of these complexes. The results showed that this type of complex is a heat storage material with the phase change character of polyethylene glycol (PEG) and the luminescent properties of europium. There was no thermal decomposition of the complex of Eu-PEG until $300^{\circ}C$. SEM showed that the complex of Eu-PEG can be dispersed in PE.

A Preliminary Geochemical Study on the Khaldzan-Buregtei Pegmatite, Western Mongolia (몽골 서부 할잔-부룩테이 페그마타이트에 대한 지화학적 예비 연구)

  • Pak, Sang-Joon;Heo, Chul-Ho;Kim, You-Dong
    • Journal of the Mineralogical Society of Korea
    • /
    • v.21 no.3
    • /
    • pp.261-269
    • /
    • 2008
  • A NYF-type (Nb-Y-Zr-F) Khaldzan-Buregtei pegmatite containing rare-earth metals occurs within alkali granitoid complex of the western Mongolia. The pegmatites are considered as differentiates of syenites and alkali feldpar granitic rocks, showing that their rare-earth element concentrations are enriched tens times higher than those from the adjacent alkali granitic rocks. It is suggested that econemic aspects of the pegmatites can be controlled by the magnitude of lateral and vertical extensions and local grade variation of REE-bearing pegmatites.

Trend in Research and Development Related to Motors and Permanent Magnets for Solving Rare-earth Resources Problem (희토류 자원문제 해결을 위한 모터 및 영구자석 연구개발 동향)

  • Lee, J.G.;Yu, J.H.;Kim, H.J.;Jang, T.S.
    • Journal of the Korean Magnetics Society
    • /
    • v.22 no.2
    • /
    • pp.58-65
    • /
    • 2012
  • Since Nd-Fe-B magnet was first synthesized in 1983, many new applications have emerged in the past two decades. With regard to motor market, it will expand because of strong energy saving requirements from the automobile and electric application markets. Especially, permanent magnet motors for hybrid and electric vehicles are drawing great attention and the usage of Nd-Fe-B magnets will increase all the more hereafter. There is, however, a serious problem as motors in such eco-friendly cars are said to operate in high temperatures of about $200^{\circ}C$. Nd-Fe-B magnet has a drawback of dramatically decreasing coercive force with the rise of temperature. In order to improve this aspect. the best way is to add dysprosium (Dy) into the magnet. So, Dy has become an essential element for Nd-Fe-B high-performance magnet as it helps to maintain coercive force even at high temperatures. On the other hand, the rare earth resources in the earth crust are eccentrically-located and its majority is produced in China. There is a need to reduce its usage as, especially compared to light rare earth elements as neodymium (Nd) and samarium (Sm), heavy rare earth elements including Dy are unevenly distributed to a dramatic degree, their output low, and their prices are about 10 times that of Nd. The present article includes a summary of the trend in research and development of motors and permanent magnets to solve rare-earth resources problem.