• 제목/요약/키워드: rapid tooling

검색결과 81건 처리시간 0.027초

Feasibility study on developing productivity and quality improved three dimensional printing process

  • Lee, Won-Hee;Kim, Dong-Soo;Lee, Taik-Min;Lee, Min-Cheol
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 제어로봇시스템학회 2005년도 ICCAS
    • /
    • pp.2160-2163
    • /
    • 2005
  • Solid freeform fabrication (SFF) technology plays a major role in industry and represents a reasonable percentage of industrial rapid prototyping/tooling/manufacturing (RP/RT/RM) development applications. However, SFF technology still has long way to progress to achieve satisfactory process speed, surface finish and overall quality improvement of its application. Today, three dimensional printing (3DP) technique that is one of SFF technology is receiving many interests, and is applied by various fields. It can fabricate three dimensional objects of solid freeform with high speed and low cost using ink jet printing technology. However, need long curing time after manufacture completion. And it must do post-processing process necessarily to heighten strength of objects because strength of fabricated objects is very weak. Therefore, in this study, we proposed an improved 3DP process that can solve problems of conventional 3DP process. The general 3DP process is method to spout binder simply through printer head on powder, but proposed process is method to cure jetted UV resin by UV lamp after jet UV resin using printhead on powder. The hardening of resin is achieved strongly at early time by UV lamp in proposed method. So, the proposed process can fabricate three dimensional objects with high speed without any post-processing.

  • PDF

유한요소해석을 이용한 핫스탬핑 공정시 발생하는 온도 이력 및 상변태 해석 (Analysis of Phase Transformation and Temperature History during Hot Stamping Using the Finite Element Method)

  • 윤승채;김도형
    • 소성∙가공
    • /
    • 제22권3호
    • /
    • pp.123-132
    • /
    • 2013
  • Hot stamping, which is the hot pressing of special steel sheet using a cold die, can combine ease of shaping with high strength mechanical properties due to the hardening effect of rapid quenching. In this paper, a thermo-mechanical analysis of hot stamping using the finite element method in conjunction with phase transformations was performed in order to investigate the plastic deformation behavior, temperature history, and mechanical properties of the stamped car part. We also conducted a fully coupled thermo-mechanical analysis during the stamping and rapid quenching process to obtain the mechanical properties with the consideration of the effects of plastic deformation and phase transformation on the temperature histories at each point in the part. The finite element analysis could provide key information concerning the temperature histories and the sheet mechanical properties when the phase transformation is properly considered. Such an analysis can also be used to determine the effect of cyclic cooling on the tooling.

FDM(Fused Deposition Modeling) part의 후가공 최소화를 위한 최적성형방향 결정 (Determining Optimal Build Orientation in Fused Deposition Modeling for Minimizing Post Machining by Using Genetic Algorithm.)

  • 안대건;김호찬;양화준;이일엽;장태식;정해도;이석희
    • 한국정밀공학회:학술대회논문집
    • /
    • 한국정밀공학회 2003년도 춘계학술대회 논문집
    • /
    • pp.18-21
    • /
    • 2003
  • Fused Deposition Modeling (FDM) parts are made by piling up thin layers that cause the stair stepping effect at the surface of FDM parts. This effect brings about poor surface roughness of the part and requires additional post machining such as manual finishing that is detrimental to the part geometry and time consuming. Determining optimal build orientation for FDM parts can be one solution to minimize the post machining. However, by using the CAD model, calculating the optimal build orientation is impractical due to heavy computing process. In order to calculate the optimal build orientation with high speed. the surface roughness model based on measured data and interpolation is newly developed in this research. Also. the genetic algorithm (GA) is applied for acquiring reliable solution. Finally, It is verified from the test that the presented approach is very efficient for reducing the additional post machining process fer FDM parts.

  • PDF

단속형 가변 적층 쾌속 초형 공정(VLM-ST)을 위한 정밀도 향상에 관한 연구 및 실험적 검증 (Accuracy Improvement in Transfer-Type Variable Lamination Manufacturing Process using Expandable Polystyrene Foam and Experimental Verification)

  • 최홍석;안동규;이상호;양동열
    • 한국정밀공학회지
    • /
    • 제19권7호
    • /
    • pp.97-105
    • /
    • 2002
  • The use of rapid prototyping (RP) has reduced time to market, cut total costs and improved product quality by giving design and manufacturing teams the opportunity to verify and fine tune designs before committing them to expensive tooling and fabrication. In order to improve their unique characteristics according to the working principles, Variable Lamination Manufacturing process (VLM-ST) and corresponding CAD/CAM software (VLM-Slicer) is developed. The objective of this study is to improve the accuracy of VLM-ST process, and it can be done by offset fur cutting error correction, cutting path overrun fur sharp edge and reference shape generation for off-line stacking. It has been shown that, through the verification experiments for given practical shapes, the proposed algorithms are effective for diverse categories of three-dimensional shapes.

The Current State, Outcome and Vision of Additive Manufacturing

  • Terner, Mathieu
    • Journal of Welding and Joining
    • /
    • 제33권6호
    • /
    • pp.1-5
    • /
    • 2015
  • Additive Manufacturing defines the fabrication of objects by successive consolidation of materials, layer by layer, according to a three-dimensional design. The numerous technologies available today were recently standardized into seven categories based on the general method. Each technology has its own set of advantages and limitations. Though it very much depends on the field of application, major assets of additive manufacturing compared to conventional processing routes are the ability to readily offer complexity (in terms of intricate shape and customization) and significant reduction of waste. On the other hand, additive manufacturing often suffers of relatively low production rates. Anyhow, additive manufacturing technologies is being given outstanding attention. In particular, metal additive manufacturing emerges as of great significance in industries like aerospace, automotive and tooling. The trend progresses toward full production of high value finished products.

SLS의 공정 파라미터 최적화에 관한 연구 (Optimization of Build Parameters in SLS Process)

  • 허성민;오도근;최경현;이석희
    • 대한기계학회논문집A
    • /
    • 제24권3호
    • /
    • pp.769-776
    • /
    • 2000
  • RP(Rapid Prototyping) technology is gaining its popularity in building a prototype in all industries. SLS(Slective Laser Sintering) is one of RP technologies, which is focused on tooling processes as well as three dimension solid model. There are several factors, the length and the cross-sectional area of a part, that have an effect on build setup in SLS process. In this paper, the computation on geometrical relationship is used to slice STL file and to estimate these factors. Based on these values, the build setup parameters such as the heating temperature, the laser power, and the powder cartridge feed rate are determined by neural network approaches. The test results show that the computation time is saved and the neural network approach is able to apply to get the optimal parameters of build process within an acceptable error rate.

슬립 캐스팅을 이용한 통기성 세라믹형의 쾌속 제작 (Rapid Tooling of Porous Ceramic Mold Using Slip Casting)

  • 정성일;정두수;임용관;정해도;조규갑
    • 한국정밀공학회지
    • /
    • 제16권5호통권98호
    • /
    • pp.98-103
    • /
    • 1999
  • The application field of porous mold is more and more expended. A mixture of alumina and cast iron is used for making porous mold using slip and vacuum casting method in this study. Slip casting is a process that slurry is poured into silicon rubber mold, dried in vacuum oven, debinded and sintered in furnace, In this procedure, slurry is composed of powder, binder, dispersion agent, and water. Vacuum casting is a technique for removing air bubbles existed in the slurry under vacuum condition. Since ceramics has a tendency of over-shrinkage after sintering, cast iron is used to compensate dimensional change. The results shows that sintering temperature has a great effect on characteristics of alumina-cast iron composite sintered parts. Finally ceramic-metal composite sintered mold can be used for aluminum alloy casting of shoe mold using this process.

  • PDF

레이저를 이용한 직접금속조형(DMD) 기술 (Laser-Aided Direct Metal Deposition (DMD) Technology)

  • 지해성;서정훈
    • 한국CDE학회논문집
    • /
    • 제8권3호
    • /
    • pp.150-156
    • /
    • 2003
  • Direct Metal Deposition (DMD) is a new additive process producing three-dimensional metal components or tools directly from CAD data, which aims to take mold making and metalworking in an entirely new direction. It is the blending of five common technologies: lasers, CAD, CAM, sensors and materials. In the resulting process, alternatively called laser cladding, an industrial laser is used to locally heat a spot on a tool-steel work piece or platform, forming a molten pool of metal. A small stream of powdered tool-steel metal is then injected into the metal pool to increase the size of the molten pool. By moving the laser beam back and forth, under CNC control, and tracing out a pattern determined by a computerized CAD design, the solid metal part is eventually built line-by-line, one layer at a time. DMD produces improved material properties in less time and at a lower cost than is possible with traditional fabrication technologies.

3D 프린터용 복합재료 연구 동향 (3D Printable Composite Materials: A Review and Prospective)

  • 오은영;이진우;서종환
    • Composites Research
    • /
    • 제31권5호
    • /
    • pp.192-201
    • /
    • 2018
  • 3D 프린팅 기술의 활용은 복잡한 형상의 제품을 보다 손쉽게 생산 가능하게 하며, 시간적 경제적 이점을 제공함으로써 기존 제조업의 형태를 변화시킬 차세대 핵심 제조 기술로 부상하고 있다. 그러나 순수 고분자 소재 출력물의 기계적/전기적 특성 및 기능은 해당 기술의 확산에 있어 한계점으로 작용하였고, 이것은 고성능 고분자 복합재료 개발에 대한 수요로 이어졌다. 이에 본 논문에서는 고성능 3D 프린팅용 고분자 복합재료 개발의 최신 연구 동향을 소개하고, 응용 분야와 가능성 및 향후 연구방향에 대해 논하고자 한다.

균일 냉각을 고려한 Thick-Wall 형상의 플라스틱 렌즈 쾌속 금형 제작 (Manufacturing of Rapid Tooling for Thick-Wall Plastic Lens Mold with Conformal Cooling Channel)

  • 박형필;차백순;이상용;최재혁;이병옥
    • Design & Manufacturing
    • /
    • 제1권1호
    • /
    • pp.27-32
    • /
    • 2007
  • In the optical application demand for high quality lens is increasing. Plastics lenses are demanded more than glass lenses for large size lenses as well as micro-size lenses. It is difficult to apply typical straight cooling channels of injection mold to lens molding due to its non-uniform temperature distribution. In this study, we manufactured molds for plastic lenses with the conventional cooling channels and conformal cooling channels produced by the DMLS process. We evaluated cooling performance for the 2 molds by injection molding experiment. Also, uniformity of the temperature distribution was tested by infrared camera and temperature monitoring. We confirmed that the cooling performance and temperature uniformity with the conformal cooling channels is much improved from the ones with the conventional. The cooling time with the conformal cooling channels was reduced 30% compared with the conventional cooling channels.

  • PDF