• 제목/요약/키워드: rapid molecular detection

검색결과 170건 처리시간 0.023초

Rapidly quantitative detection of Nosema ceranae in honeybees using ultra-rapid real-time quantitative PCR

  • Truong, A-Tai;Sevin, Sedat;Kim, Seonmi;Yoo, Mi-Sun;Cho, Yun Sang;Yoon, Byoungsu
    • Journal of Veterinary Science
    • /
    • 제22권3호
    • /
    • pp.40.1-40.12
    • /
    • 2021
  • Background: The microsporidian parasite Nosema ceranae is a global problem in honeybee populations and is known to cause winter mortality. A sensitive and rapid tool for stable quantitative detection is necessary to establish further research related to the diagnosis, prevention, and treatment of this pathogen. Objectives: The present study aimed to develop a quantitative method that incorporates ultra-rapid real-time quantitative polymerase chain reaction (UR-qPCR) for the rapid enumeration of N. ceranae in infected bees. Methods: A procedure for UR-qPCR detection of N. ceranae was developed, and the advantages of molecular detection were evaluated in comparison with microscopic enumeration. Results: UR-qPCR was more sensitive than microscopic enumeration for detecting two copies of N. ceranae DNA and 24 spores per bee. Meanwhile, the limit of detection by microscopy was 2.40 × 104 spores/bee, and the stable detection level was ≥ 2.40 × 105 spores/bee. The results of N. ceranae calculations from the infected honeybees and purified spores by UR-qPCR showed that the DNA copy number was approximately 8-fold higher than the spore count. Additionally, honeybees infected with N. ceranae with 2.74 × 104 copies of N. ceranae DNA were incapable of detection by microscopy. The results of quantitative analysis using UR-qPCR were accomplished within 20 min. Conclusions: UR-qPCR is expected to be the most rapid molecular method for Nosema detection and has been developed for diagnosing nosemosis at low levels of infection.

Rapid Dot-Blot Immunoassay for Detecting Multiple Salmonella enterica Serotypes

  • Jeongik Cho;Heymin Song;Hyun C. Yoon;Hyunjin Yoon
    • Journal of Microbiology and Biotechnology
    • /
    • 제34권2호
    • /
    • pp.340-348
    • /
    • 2024
  • Salmonella, a major contributor to foodborne infections, typically causes self-limiting gastroenteritis. However, it is frequently invasive and disseminates across the intestinal epithelium, leading to deadly bacteremia. Although the genus is subdivided into >2,600 serotypes based on their antigenic determinants, only few serotypes are responsible for most human infections. In this study, a rapid dot-blot immunoassay was developed to diagnose multiple Salmonella enterica serotypes with high incidence rates in humans. The feasibility of 10 commercial antibodies (four polyclonal and six monoclonal antibodies) was tested using the 18 serotypes associated with 67.5% Salmonella infection cases in the United States of America (U.S.A) in 2016. Ab 3 (polyclonal; eight of 18 serotypes), Ab 8 (monoclonal; 13 of 18 serotypes), and Ab 9 (monoclonal; 10 of 18 serotypes) antibodies exhibited high detection rates in western blotting and combinations of two antibodies (Ab 3+8, Ab 3+9, and Ab 8+9) were applied to dot-blot assays. The combination of Ab 3+8 identified 15 of the tested 18 serotypes in 3 h, i.e., S. Enteritidis, S. Typhimurium, S. Javiana, S. I 4,[5],12:i:-, S. Infantis, S. Montevideo, S. Braenderup, S. Thompson, S. Saintpaul, S. Heidelberg, S. Oranienburg, S. Bareilly, S. Berta, S. Agona, and S. Anatum, which were responsible for 53.7% Salmonella infections in the U.S. in 2016. This cost-effective and rapid method can be utilized as an on-site colorimetric method for Salmonella detection.

SARS-CoV-2의 하수조사를 위한 대체 및 신속 검출 방법 (Alternative and Rapid Detection Methods for Wastewater Surveillance of SARS-CoV-2)

  • 제스민아터;이복진;이재엽;안창혁;;김일호
    • 한국물환경학회지
    • /
    • 제40권1호
    • /
    • pp.19-35
    • /
    • 2024
  • The global pandemic, coronavirus disease caused by Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), has led to the implementation of wastewater surveillance as a means to monitor the spread of SARS-CoV-2 prevalence in the community. The challenging aspect of establishing wastewater surveillance requires a well-equipped laboratory for wastewater sample analysis. According to previous studies, RT-PCR-based molecular tests are the most widely used and popular detection method worldwide. However, this approach for the detection or quantification of SARS-CoV-2 from wastewater demands a specialized laboratory, skilled personnel, expensive instruments, and a workflow that typically takes 6 to 8 hours to provide results for a few samples. Rapid and reliable alternative detection methods are needed to enable less-well-qualified practitioners to set up and provide sensitive detection of SARS-CoV-2 within wastewater at regional laboratories. In some cases, the structural and molecular characteristics of SARS-CoV-2 are unknown, and various strategies for the correct diagnosis of COVID-19 have been proposed by research laboratories. The ongoing research and development of alternative and rapid technologies, namely RT-LAMP, ELISA, Biosensors, and GeneXpert, offer a wide range of potential options not only for SARS-CoV-2 detection but also for other viruses. This study aims to discuss the effective regional rapid detection and quantification methods in community wastewater.

Accurate and Rapid Methods for Detecting Salmonella spp. Using Polymerase Chain Reaction and Aptamer Assay from Dairy Products: A Review

  • Hyeon, Ji-Yeon;Seo, Kun-Ho;Chon, Jung-Whan;Bae, Dongryeoul;Jeong, Dongkwang;Song, Kwang-Young
    • Journal of Dairy Science and Biotechnology
    • /
    • 제38권4호
    • /
    • pp.169-188
    • /
    • 2020
  • Salmonella spp. is the most common cause of gastrointestinal food poisoning worldwide, and human salmonellosis is mostly caused by the consumption of contaminated food. Therefore, the development of rapid detection methods for Salmoenlla spp. and rapid identification of the source of infection by subtyping are important for the surveillance and monitoring of food-borne salmonellosis. Therefore, this review introduces (1) History and nomenclature of Salmoenlla spp., (2) Epidemiology of Salmoenlla spp., (3) Detection methods for Salmoenlla spp. - conventional culture method, genetic detection method, molecular detection methods, and aptamer, and (4) Subtyping methods for Salmoenlla spp. - pulsed-field gel electrophoresis and repetitive sequence-based polymerase chain reaction (PCR).

Mousse cake와 Tiramisu에 인위접종된 Salmonella Typhimurium의 식품공전 분리배지, Real-time PCR과 Loop-mediated isothermal amplification-bioluminescence의 검출 특성 비교 (Comparison of Isolation Agar Method, Real-Time PCR and Loop-Mediated Isothermal Amplification-Bioluminescence for the Detection of Salmonella Typhimurium in Mousse Cake and Tiramisu)

  • 이소영;곽승해;김진희;오세욱
    • 한국식품위생안전성학회지
    • /
    • 제34권3호
    • /
    • pp.290-295
    • /
    • 2019
  • 최근 한국에서 발생한 Salmonella로 인한 식중독 사고는 2018년 9월 학교급식에서 제공된 초콜릿 무스 케이크가 원인이 되었다. 이 연구의 목적은 Salmonella Typhimurium이 인위적으로 접종된 무스케이크와 티라미수에서 3M Molecular Detection Assay 2 - Salmonella와 식품공전에 등재된 방법인 분리배지와 real-time PCR을 비교하는 것이었다. 무스케이크 2종과 티라미수 2종 25 g에 225 mL BPW를 넣고 $37^{\circ}C$에서 24시간 동안 증균 배양하였다. 배양 후, 3M Molecular Detection Assay 2 - Salmonella, 분리배지 그리고 real-time PCR로 분석하였다. 초콜릿 무스 케이크를 제외하고 3가지 방법은 유사한 결과를 보였다. 초콜릿 무스 케이크에서 분리배지와 3M Molecular Detection Assay 2 - Salmonella는 모든 접종수준에서 동일한 결과를 나타낸 반면 real-time PCR은 $10^4CFU/25g$ 수준에서 1번의 양성결과를 제외하고 모두 검출되지 않았다. 초콜릿 무스에 S. Typhimurium을 $10^2CFU/25g$ 수준으로 접종하였을때, real-time PCR를 이용한 검출은 15%에서는 부분적인 음성을 나타냈고, 20-100% 함량의 초콜릿 무스에서는 모두 음성이었다. Real-time PCR로는 chocolate이 15% 이상 함유된 식품에서의 Salmonella균 검출이 불가능하였지만, LMAP 기반의 3M Molecular Detection Assay 2으로는 chocolate 농도에 관계없이 검출이 가능하였다.

Rapid Detection of Streptococcus mutans Using an Integrated Microfluidic System with Loop-Mediated Isothermal Amplification

  • Jingfu Wang;Jingyi Wang;Xin Chang;Jin Shang;Yuehui Wang;Qin Ma;Liangliang Shen
    • Journal of Microbiology and Biotechnology
    • /
    • 제33권8호
    • /
    • pp.1101-1110
    • /
    • 2023
  • Streptococcus mutans is the primary causative agent of caries, which is one of the most common human diseases. Thus, rapid and early detection of cariogenic bacteria is critical for its prevention. This study investigated the combination of loop-mediated isothermal amplification (LAMP) and microfluid technology to quantitatively detect S. mutans. A low-cost, rapid microfluidic chip using LAMP technology was developed to amplify and detect bacteria at 2.2-2.2 × 106 colony-forming units (CFU)/ml and its detection limits were compared to those of standard polymerase chain reaction. A visualization system was established to quantitatively determine the experimental results, and a functional relationship between the bacterial concentration and quantitative results was established. The detection limit of S. mutans using this microfluidic chip was 2.2 CFU/ml, which was lower than that of the standard approach. After quantification, the experimental results showed a good linear relationship with the concentration of S. mutans, thereby confirming the effectiveness and accuracy of the custom-made integrated LAMP microfluidic system for the detection of S. mutans. The microfluidic system described herein may represent a promising simple detection method for the specific and rapid testing of individuals at risk of caries.

A combined application of molecular docking technology and indirect ELISA for the serodiagnosis of bovine tuberculosis

  • Song, Shengnan;Zhang, Qian;Yang, Hang;Guo, Jia;Xu, Mingguo;Yang, Ningning;Yi, Jihai;Wang, Zhen;Chen, Chuangfu
    • Journal of Veterinary Science
    • /
    • 제23권3호
    • /
    • pp.50.1-50.12
    • /
    • 2022
  • Background: There is an urgent need to find reliable and rapid bovine tuberculosis (bTB) diagnostics in response to the rising prevalence of bTB worldwide. Toll-like receptor 2 (TLR2) recognizes components of bTB and initiates antigen-presenting cells to mediate humoral immunity. Evaluating the affinity of antigens with TLR2 can form the basis of a new method for the diagnosis of bTB based on humoral immunity. Objectives: To develop a reliable and rapid strategy to improve diagnostic tools for bTB. Methods: In this study, we expressed and purified the sixteen bTB-specific recombinant proteins in Escherichia coli. The two antigenic proteins, MPT70 and MPT83, which were most valuable for serological diagnosis of bTB were screened. Molecular docking technology was used to analyze the affinity of MPT70, MPT83, dominant epitope peptide of MPT70 (M1), and dominant epitope peptide MPT83 (M2) with TLR2, combined with the detection results of enzyme-linked immunosorbent assay to evaluate the molecular docking effect. Results: The results showed that interaction surface Cα-atom root mean square deviation of proteins (M1, M2, MPT70, MPT83)-TLR2 protein are less than 2.5 A, showing a high affinity. It is verified by clinical serum samples that MPT70, MPT83, MPT70-MPT83 showed good diagnostic potential for the detection of anti-bTB IgG and M1, M2 can replace the whole protein as the detection antigen. Conclusions: Molecular docking to evaluate the affinity of bTB protein and TLR2 combined with ELISA provides new insights for the diagnosis of bTB.

A Rapid PCR-based Assay for Detecting Hepatitis B Viral DNA Using GenSpector TMC-1000

  • Huh, Bum;Ha, Young-Ju;Oh, Jae-Tak;Park, Eun-Ha;Park, Jin-Su;Park, Hae-Joon
    • Journal of Applied Biological Chemistry
    • /
    • 제49권4호
    • /
    • pp.143-147
    • /
    • 2006
  • A rapid PCR-based assay for detecting hepatitis B viral DNA(HBV DNA) in serum and plasma was developed using a new PCR instrument named GenSpector(TMC-1000, Samsung electronics). PCR was carried out using a chip-based platform, which enabled 50 PCR cycles with internal controls, and melting-curve analysis in 30 minutes. Verification of the amplified HBV DNA product and the internal control was based on specific melting temperatures(Tm) analysis, executed by the GenSpector software. Primers were designed within the region conserved through HBV genotypes A to F. The lower limit of detection was 840 copies/ml serum, conducted with serial dilutions of a HBV DNA positive control(ACCURUN 325 series 700, Boston Biomedica Inc.). The assay was also compared to another assay for HBV DNA(Versant HBV DNA 3.0 assay, Bayer HealthCare) for 200 samples(each 100 clinical negative and positive samples). The sensitivity and specificity were 100% matched. This rapid PCR-based assay is specific, reproducible, and enables qualitative detection of HBV DNA.