• Title/Summary/Keyword: rapid consolidation method

Search Result 26, Processing Time 0.021 seconds

Rapid Inflection Point Method of Consolidation Testing (변곡점을 이용한 신속한 압밀시험에 관한 연구)

  • 민덕기;황광모;최규환
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2000.11a
    • /
    • pp.681-688
    • /
    • 2000
  • This study presented the new method for evaluating the coefficient of consolidation by using inflection point method which was based on the fact that time factor, T corresponding to the inflection point of a semilogarithmic plot of a time curve is fixed and equals to T = 0.405 at 70% consolidation. In the proposed method, the next load increment is applied as soon as the necessary time required to identify the inflection point. Thus, the coefficient of consolidation may be easily evaluated. The time required to complete the testing using this rapid consolidation method could be as low as 1.5-3 hours compared with 1 or 2 weeks in the case of the conventional consolidation test.

  • PDF

Rapid Consolidation Test Using Inflection Point Method (변곡점법에 의한 신속 압밀시험)

  • 민덕기;황광모;최규환
    • Journal of the Korean Geotechnical Society
    • /
    • v.18 no.4
    • /
    • pp.85-93
    • /
    • 2002
  • This study presented a new method for evaluating the coefficient of consolidation by using inflection point method which was based on the fact that time factor, T corresponding to the inflection point of a semi-logarithmic plot of a time curve is fixed and equals to T = 0.405 at 70.03% consolidation. In the proposed method, as the next load increment is applied as soon as the inflection point is confirmed, the time required to identify the inflection point can be shortened. Thus, the coefficient of consolidation may be easily evaluated. The time required to complete the testing using this rapid consolidation method could be as low as 0.5~9 hours compared with 1 or 2 weeks in the case of the conventional consolidation test. For this study, we designed settlement equipment for normalization of test samples. In test results, the factors of consolidation agreed with undisturbed samples results.

Undrained Shear Strength of Clay and Stability of Sub]marine Slope Undergoing Rapid Deposition (점토의 비배수 전단강도와 지적성퇴적에 의한 해저사면의 안정성)

  • 김승열
    • Geotechnical Engineering
    • /
    • v.4 no.4
    • /
    • pp.5-18
    • /
    • 1988
  • A series of CU triaxial compression tests were conducted to investigate the variation of -untrained shear strength of underconsolidated clay at different degrees of consolidation. The soil samples were artificially made by one-dimensional consolidation using soft Bangkok Clay. The test results showed that the undrained shear strength of clay parabolically increased convoking downward with increasing degrees of consolidation. However, all the measured shear strength were unanimously related to the effective stress. These experimental results were used in the numerical analysis. A finite element computer program was developed to investigate the stability of submarine .slope undergoing rapid deposition taking into account the variation in soil compressibility and permeability during the consolidation process. The relationships of degree of consolidation with time as a function of rate of deposition and angle of slope were established. A method of predicting the time of slope failure and the volume of moving mass of soil was also made.

  • PDF

Consolidation of Rapidly Solidified Al-20 wt% Si Alloy Powders Using Equal Channel Angular Pressing (급속응고 Al-20 wt% Si 합금 분말의 ECAP를 통한 고형화)

  • 윤승채;홍순직;서민홍;정영기;김형섭
    • Journal of Powder Materials
    • /
    • v.11 no.3
    • /
    • pp.233-241
    • /
    • 2004
  • In this study, bottom-up type powder processing and top-down type SPD (severe plastic deformation) approaches were combined in order to achieve both full density and grain refinement of Al-20 wt% Si powders without grain growth, which was considered as a bottle neck of the bottom-up method using the conventional powder metallurgy of compaction and sintering. ECAP (Equal channel angular pressing), one of the most promising method in SPD, was used for the powder consolidation. The powder ECAP processing with 1, 2, 4 and 8 passes was conducted for 10$0^{\circ}C$ and 20$0^{\circ}C$ It was found by microhardness, compression tests and micro-structure characterization that high mechanical strength could be achieved effectively as a result of the well bonded powder contact surface during ECAP process. The SPD processing of powders is a viable method to achieve both fully density and nanostructured materials.

Consolidation Behaviour of Dredged Clay Ground Improved by Horizontal Drain Method (수평배수공법에 의해 개량된 준설점토지반의 압밀거동에 관한 연구)

  • 김형주;원명수
    • Geotechnical Engineering
    • /
    • v.13 no.1
    • /
    • pp.137-146
    • /
    • 1997
  • In this study, a large consolidation test was carried out to estimate the consolidation behaviour of dredged clay ground improved by horizontal drain using plastic board drain with a vacuum pressure. The test results were analyzed by a numerical simulation using potential consolidation theory applied to a hollow cylinder. The rapid decreases in pore pressure and the drain speed in the plastic board indicate that the consolidation occurred quickly after the vacuum state was applied to the test soil. According to the numerical analysis obtained by applying the linear potential consolidation theory to a clay hollow cylinder with external radial drainage, the pore pressure is affected by the strain and the permeability of the soil rather than by the diffusion types. Therefore, measured surface settlement agreed with the numerical solution at the point where consolidation pressure increasing rate u: -0.5. Also the behaviour of the clay layer settlement in the place where the drain was installed was similar to that shown in Barron's consolidation theory. Finally, the design and construction procedure including the selection of the appropriate arrangement of horizontal drains were discussed based on the results of the laboratory tutsts. It is also shown that the potential consolidation theory make it possible to predict consolidation behaviour in the field using horizontal drains exactly.

  • PDF

A New Proposed Technique for a Secondary Consolidation Coefficient Based on the Constant Rate of Strain Test (CRS시험에 의한 2차압밀계수의 결정방법 제안)

  • 김형주;이민선;이용주;김대우
    • Journal of the Korean Geotechnical Society
    • /
    • v.20 no.8
    • /
    • pp.113-121
    • /
    • 2004
  • The present study is suggested to estimate the degree of secondary consolidation caused by various changes of stress such as loading, unloading and reloading in improving poor subsoil through pre-compression loading construction method and, for this purpose, examined the characteristics of the consolidation of Kunsan clay through incremental loading test (IL) using standard consolidation tester and constant loading rate test (CLR), which were adapted from the constant rate of strain test (CRS). In addition, after CRS test, this study determined the characteristics of secondary consolidation and relationships among void ratio, effective stress and time according to the ratio of effective over-consolidation on reloading at the point of time of random expansion. Kunsan clay had larger expansion and smaller secondary consolidation settlement when the ratio of effective over-consolidation was high. In addition, when loading was applied after the load was removed at once, the secondary consolidation coefficient $C'_{\alpha}$ was smaller than that when the load was removed gradually, and when the ratio of effective over-consolidation was over 1.4 a similar value was produced. Based on the entire settlement resulting from reloading, the secondary consolidation coefficient $C"_{\alpha}$ increased non-linearly with the lapse of time but the final value was similar to that in the case of rapid removal. The strain velocity of void ratio was in a regular linear relationship with the increase of loading time regardless of the ratio of effective over-consolidation in both tests and it grew smaller with the increase of the ratio of effective over-consolidation.tion.

Consolidation and Mechanical Behavior of Gas Atomized MgZn4.3Y0.7 Alloy Powders using High Pressure Torsion (고압비틀림 공정을 통한 급속응고 MgZn4.3Y0.7 합금 분말의 치밀화 및 기계적 거동)

  • Yoon, Eun-Yoo;Chae, Hong-Jun;Kim, Taek-Soo;Lee, Chong-Soo;Kim, Hyoung-Seop
    • Journal of Powder Materials
    • /
    • v.17 no.3
    • /
    • pp.190-196
    • /
    • 2010
  • In this paper, rapid solidified Mg-4.3Zn-0.7Y (at.%) alloy powders were prepared using an inert gas atomizer, followed by a severe plastic deformation technique of high pressure torsion (HPT) for consolidation of the powders. The gas atomized powders were almost spherical in shape, and grain size was as fine as less than $5\;{\mu}m$ due to rapid solidification. Plastic deformation responses during HPT were simulated using the finite element method, which shows in good agreement with the analytical solutions of a strain expression in torsion. Varying the HPT processing temperature from ambient to 473 K, the behavior of powder consolidation, matrix microstructural evolution and mechanical properties of the compacts was investigated. The gas atomized powders were deformed plastically as well as fully densified, resulting in effective grain size refinements and enhanced microhardness values.

Compressibility Characteristics of the Lime Treated Clay (생석회 혼합토의 압축특성에 관한 연구)

  • 민덕기;황광모;오미희
    • Journal of the Korean Geotechnical Society
    • /
    • v.19 no.6
    • /
    • pp.23-29
    • /
    • 2003
  • In this paper, effects of the acidification of ground and the chemical additive materials-ferric oxide, calcium chloride and calcium sulphate on the compressibility characteristics of the marine clay treated with quick lime were investigated. The rapid inflection point method was carried out. Results showed that the compression index of the untreated marine clay increased as the pH of pore water decreased. Also, the preconsolidation pressure, the coefficient of consolidation and the coefficient of permeability of the untreated marine clay decreased with pH of pore water. In the case of the marine clay treated with the quick lime-calcium chloride, the compression index decreased and the coefficient of consolidation and the coefficient of permeability increased. Specially, the preconsolidation pressure of sample treated with the quick lime-ferric oxide was higher than that of another samples.

The Effect of Rapid Consolidation of Nanostructured MoSi2-SiC Composite on its Mechanical Properties (나노구조 몰리브덴늄실리사이드-실리콘카바이드 복합재료의 급속소결과 기계적 성질)

  • Ko, In-Yong;Chae, Seung-Myoung;Shon, In-Jin
    • Korean Journal of Metals and Materials
    • /
    • v.48 no.5
    • /
    • pp.417-423
    • /
    • 2010
  • A dense nanostructured MoSi$_{2}$-SiC composite was synthesized by a pulsed current activated combustion synthesis method within 2 min of one step from mechanically activated powders of Mo$_{2}$C and Si. Simultaneous combustion synthesis and consolidation were accomplished under the combined effects of a pulsed current and mechanical pressure. Highly dense MoSi$_{2}$-SiC with a relative density of up to 98% was produced under simultaneous application of an 80 MPa pressure and pulsed current. The average grain size and mechanical properties of the composite were investigated.

Application of Geophysical Techniques for Observing the Void Ratio Changes of Dredged Soils (준설토의 간극비 변화 관찰을 위한 물리탐사기법의 적용)

  • Hong, Young-Ho;Lee, Jong-Sub;Lee, Changho
    • Journal of the Korean Geotechnical Society
    • /
    • v.30 no.9
    • /
    • pp.19-28
    • /
    • 2014
  • It is necessary to understand the behavior of the soils for the dredging constructions. The objective of this study is to estimate void ratio and density changes of the dredged soils by using the geophysical testing methods. A series of laboratory tests is performed to obtain geotechnical index properties of the specimen, retrieved from the west coastal of Korea. The sedimentation and self-weight consolidation tests are carried out with observing changes of the interfacial height and the elastic wave velocities. The same amounts of the soils are poured into the testing column at intervals of 12 hours until the interheight reaches to a certain level. After the completion of the sedimentatation and self-weight consolidation tests, downward permeability test is performed to assess a tidal influence in the nearshore. The mini resistance cone is penetrated into the specimen to measure the electrical resistivity with depth. All tests are completely finished, the weight of specimens are measured to calculate the void ratio with the depth. Experimental results show that the aspects of the self-weight consolidation are invisible during dredging process because of rapid sedimentation characteristics of ML. However, the elastic wave velocities increase with increasing in the effective stresses. During permeability test, measured permeability and the elastic wave velocities maintain almost identical values. Void ratio based on the elastic wave velocities changes linearly with time during the step dumpings. Void ratio estimated by the electrical resistivity represents the repeatedly layered depositions according to the step-by-step dumpings. Void ratio determined by soil sampling is similar to those of elastic waves and electrical resistivity profiles. This experimental study demonstrates that the geophysical testing methods may be an effective method for evaluating the behavior of dredged soils.