• 제목/요약/키워드: rapid assessment

검색결과 722건 처리시간 0.024초

Nanometrology and its perspectives in environmental research

  • Kim, Hyun-A;Seo, Jung-Kwan;Kim, Taksoo;Lee, Byung-Tae
    • Environmental Analysis Health and Toxicology
    • /
    • 제29권
    • /
    • pp.16.1-16.9
    • /
    • 2014
  • Objectives Rapid increase in engineered nanoparticles (ENPs) in many goods has raised significant concern about their environmental safety. Proper methodologies are therefore needed to conduct toxicity and exposure assessment of nanoparticles in the environment. This study reviews several analytical techniques for nanoparticles and summarizes their principles, advantages and disadvantages, reviews the state of the art, and offers the perspectives of nanometrology in relation to ENP studies. Methods Nanometrology is divided into five techniques with regard to the instrumental principle: microscopy, light scattering, spectroscopy, separation, and single particle inductively coupled plasma-mass spectrometry. Results Each analytical method has its own drawbacks, such as detection limit, ability to quantify or qualify ENPs, and matrix effects. More than two different analytical methods should be used to better characterize ENPs. Conclusions In characterizing ENPs, the researchers should understand the nanometrology and its demerits, as well as its merits, to properly interpret their experimental results. Challenges lie in the nanometrology and pretreatment of ENPs from various matrices; in the extraction without dissolution or aggregation, and concentration of ENPs to satisfy the instrumental detection limit.

Analysis of rotational end restraint for cross-beams of railway through truss bridges

  • Siekierski, Wojciech
    • Steel and Composite Structures
    • /
    • 제35권1호
    • /
    • pp.29-41
    • /
    • 2020
  • Cross-beams of modern through truss bridges are connected to truss chord at its nodes and between them. It results in variable rotational end restraint for cross-beams, thus variable bending moment distribution. This feature is captured in three-dimensional modelling of through truss bridge structure. However, for preliminary design or rapid assessment of service load effects such technique of analysis may not be available. So an analytical method of assessment of rotational end restraint for cross-beam of through truss bridges was worked out. Two cases - nodal cross-beam and inter-nodal cross-beam - were analyzed. Flexural and torsional stiffness of truss members, flexural stiffness of deck members and axial stiffness of wind bracing members in the vicinity of the analyzed cross-beam were taken into account. The provision for reduced stiffness of the X-type wind bracing was made. Finally, general formula for assessment of rotational end restraint was given. Rotational end restraints for cross-beams of three railway through truss bridges were assessed basing on the analytical method and the finite element method (three-dimensional beam-element modelling). Results of both methods show good agreement. The analytical method is able to reflect effects of some structural irregularities. On the basis of the obtained results the general values of rotational end restraint for nodal and inter-nodal cross-beams of railway through truss bridges were suggested.

기업을 위한 개인정보영향평가 관리 시스템의 구현에 관한 연구 (A Study on the Implementation of the Privacy Impact Assessment Management System for Enterprise)

  • 선재훈;김용호
    • 융합보안논문지
    • /
    • 제15권4호
    • /
    • pp.57-63
    • /
    • 2015
  • 세계적으로, IT 기술의 발전 및 급격한 정보화 사회로의 변화는 정보의 디지털화를 가속시켜 왔으며, 전자상거래 등의 활성화로 여러 유형의 민감 정보가 수집, 보관, 운용되는 경우가 급격히 증가하고 있다. 현재, 공공부문 및 금융뿐만이 아니라 민간부분에서도 다수의 개인정보들을 활용하고 있으며, 정보의 유출로 인한 사고도 나날이 증가하는 추세이다. 이러한 민감 정보에 대한 보안상의 문제점들의 검토와 방지를 위해, 보다 쉬운 평가관리체계 지원도구의 필요성이 제기되고 있다. 본 논문에서는 민간부문에서 효과적으로 적용 가능한, 기업을 위한 개인정보영향평가 관리 시스템인 E-PIAMS (Enterprise- Privacy Impact Assessment Management System)를 제안하고자 한다.

Seismic assessment of mixed masonry-reinforced concrete buildings by non-linear static analyses

  • Cattari, S.;Lagomarsino, S.
    • Earthquakes and Structures
    • /
    • 제4권3호
    • /
    • pp.241-264
    • /
    • 2013
  • Since the beginning of the twentieth century, the progressive and rapid spread of reinforced concrete (RC) has led to the adoption of mixed masonry-RC solutions, such as the confined masonry. However, together with structures conceived with a definite role for earthquake behaviour, the spreading of RC technology has caused the birth of mixed solutions inspired more by functional aspects than by structural ones, such as: internal masonry walls replaced by RC frames, RC walls inserted to build staircases or raising made from RC frames. Usually, since these interventions rise from a spontaneous build-up, any capacity design or ductility concepts are neglected being designed only to bear vertical loads: thus, the vulnerability assessment of this class becomes crucial. To investigate the non-linear seismic response of these structures, suitable models and effective numerical tools are needed. Among the various modelling approaches proposed in the literature and codes, the authors focus their attention on the equivalent frame model. After a brief description of the adopted model and its numerical validation, the authors aim to point out some specific peculiarities of the seismic response of mixed masonry-RC structures and their repercussions on safety verification procedures (referring in particular way to the non-linear static ones). In particular, the results of non-linear static analyses performed parametrically to various configurations representative of different interventions are discussed.

PhATETM 모형을 적용한 금강수계 중 의약물질 농도 추정 (Predicting Environmental Concentrations of Selected Pharmaceuticals Using the PhATETM Model in Keum-River, Korea)

  • 임득순;박정임
    • 한국환경보건학회지
    • /
    • 제35권1호
    • /
    • pp.45-52
    • /
    • 2009
  • In recent years, pharmaceuticals in the aquatic environment have become a matter of increasing public concern. Environmental risk assessment (ERA), including an exposure assessment, is considered the best scientifically based approach for evaluating the potential effects of pharmaceuticals on ecosystems. Computerized exposure models constitute an important tool in predicting environmental exposures of pharmaceuticals. This paper presents the applicability of an exposure model by comparing measured data of selected pharmaceuticals with predicted environmental concentrations from an exposure model. $PhATE^{TM}$ (Pharmaceutical Assessment and Transport Evaluation) model developed by the Pharmaceutical Research and Manufacturers of America (PhRMA) was adapted to run simulations for the Keum River. A set of 7 pharmaceuticals of high production in Korea was modeled. The PECs generated by the $PhATE^{TM}$ model that were then compared to the measured concentrations. The $PhATE^{TM}$ model predicted concentrations for 7 pharmaceuticals including acetaminophen, acetylsalicylic acid, erythromycin, ibuprofen, lincomycin, mefenamic acid, and naproxen were in good agreement with actual measured concentrations, which demonstrated the utility of $PhATE^{TM}$ as a predictive tool. In conclusion, $PhATE^{TM}$, although it does not intend to accurately represent reality, could be utilized for rapid predictions of the environmental concentrations of pharmaceuticals.

Applied methods for seismic assessment of scoured bridges: a review with case studies

  • Guo, Xuan;Badroddin, Mostafa;Chen, ZhiQiang
    • Earthquakes and Structures
    • /
    • 제13권5호
    • /
    • pp.497-507
    • /
    • 2017
  • Flooding induced scour has been long recognized as a major hazard to river-crossing bridges. Many studies in recent years have attempted to evaluate the effects of scour on the seismic performance of bridges, and probabilistic frameworks are usually adopted. However, direct and straightforward insight about how foundation scour affects bridges as a type of soil-foundation-structure system is usually understated. In this paper, we provide a comprehensive review of applied methods centering around seismic assessment of scoured bridges considering soil-foundation-structure interaction. When introducing these applied analysis and modeling methods, a simple bridge model is provided to demonstrate the use of these methods as a case study. Particularly, we propose the use of nonlinear modal pushover analysis as a rapid technique to model scoured bridge systems, and numerical validation and application of this procedure are given using the simple bridge model. All methods reviewed in this paper can serve as baseline components for performing probabilistic vulnerability or risk assessment for any river-crossing bridge system subject to flood-induced scour and earthquakes.

Variability of plant risk due to variable operator allowable time for aggressive cooldown initiation

  • Kim, Man Cheol;Han, Sang Hoon
    • Nuclear Engineering and Technology
    • /
    • 제51권5호
    • /
    • pp.1307-1313
    • /
    • 2019
  • Recent analysis results with realistic assumptions provide the variability of operator allowable time for the initiation of aggressive cooldown under small break loss of coolant accident or steam generator tube rupture with total failure of high pressure safety injection. We investigated how plant risk may vary depending on the variability of operators' failure probability of timely initiation of aggressive cooldown. Using a probabilistic safety assessment model of a nuclear power plant, we showed that plant risks had a linear relation with the failure probability of aggressive cooldown and could be reduced by up to 10% as aggressive cooldown is more reliably performed. For individual accident management, we found that core damage potential could be gradually reduced by up to 40.49% and 63.84% after a small break loss of coolant accident or a steam generator tube rupture, respectively. Based on the importance of timely initiation of aggressive cooldown by main control room operators within the success criteria, implications for improvement of emergency operating procedures are discussed. We recommend conducting further detailed analyses of aggressive cooldown, commensurate with its importance in reducing risks in nuclear power plants.

Assessment of streamflow variation considering long-term land-use change in a watershed

  • Noh, Joonwoo;Kim, Yeonsu;Yu, Wansik;Yu, Jisoo
    • 농업과학연구
    • /
    • 제48권3호
    • /
    • pp.629-642
    • /
    • 2021
  • Land-use change has an important role in the hydrologic characteristics of watersheds because it alters various hydrologic components such as interception, infiltration, and evapotranspiration. For example, rapid urbanization in a watershed reduces infiltration rates and increases peak flow which lead to changes in the hydrologic responses. In this study, a physical hydrologic model the soil and water assessment tool (SWAT) was used to assess long-term continuous daily streamflow corresponding to land-use changes that occurred in the Naesungchun river watershed. For a 30-year model simulation, 3 different land-use maps of the 1990s, 2000s, and 2010s were used to identify the impacts of the land-use changes. Using SWAT-CUP (calibration and uncertainty program), an automated parameter calibration tool, 23 parameters were selected, optimized and compared with the daily streamflow data observed at the upstream, midstream and downstream locations of the watershed. The statistical indexes used for the model calibration and validation show that the model performance is improved at the downstream location of the Naesungchun river. The simulated streamflow in the mainstream considering land-use change increases up to -2 - 30 cm compared with the results simulated with the single land-use map. However, the difference was not significant in the tributaries with or without the impact of land-use change.

화합물 합성반응 중 Fridel - Crafts Acylation 공정에서의 폭주반응 위험성평가 (The Risk Assessment of Runway Reaction in the Process of Fridel-Crafts Acylation for Synthesis Reaction)

  • 이광호;김원성;전진우;주영종;박교식
    • 한국안전학회지
    • /
    • 제36권3호
    • /
    • pp.24-30
    • /
    • 2021
  • Heat is generated during the synthesis and mixing process of chemical compounds due to a change in activation energy during the reaction. A runaway reaction occurs when sufficient heat is not removed during the heat control process within a reactor, rapidly increasing the temperature, reaction speed, and rate of heat generation inside the reactor. A risk assessment was executed using an RC-1 (Reaction Calorimeter) during Friedel-Crafts acylation. Friedel-Crafts acylation runs the risk of rapid heat generation during Active Pharmaceutical Ingredient (API) manufacturing; it was used to confirm the risk of a runaway reaction at each synthesis stage and during the mixing process. This study used experimental data to develop a safety efficiency improvement plan to control the risks of runaway and other exothermic reactions, which was implemented at the production site of a chemical plant.

Fragility-based rapid earthquake loss assessment of precast RC buildings in the Marmara region

  • Ali Yesilyurt;Oguzhan Cetindemir;Seyhan O. Akcan;Abdullah C. Zulfikar
    • Structural Engineering and Mechanics
    • /
    • 제88권1호
    • /
    • pp.13-23
    • /
    • 2023
  • Seismic risk assessment studies are one of the most crucial instruments for mitigating casualties and economic losses. This work utilizes fragility curves to evaluate the seismic risk of single-story precast buildings, which are generally favored in Marmara's organized industrial zones. First, the precast building stock in the region has been categorized into nine sub-classes. Then, seven locations in the Marmara region with a high concentration of industrial activities are considered. Probabilistic seismic hazard assessments were conducted for both the soil-dependent and soil-independent scenarios. Subsequently, damage analysis was performed based on the structural capacity and mean fragility curves. Considering four different consequence models, 630 sub-class-specific loss curves for buildings were obtained. In the current study, it has been determined that the consequence model has a significant impact on the loss curves, hence, average loss curves were computed for each case investigated. In light of the acquired results, it was found that the loss ratio values obtained at different locations within the same region show significant variation. In addition, it was observed that the structural damage states change from serviceable to repairable or repairable to unrepairable. Within the scope of the study, 126 average loss functions were presented that could be easily used by non-experts in earthquake engineering, regardless of structural analysis. These functions, which offer loss ratios for varying hazard levels, are valuable outputs that allow preliminary risk assessment in the region and yield sensible outcomes for insurance activities.