• Title/Summary/Keyword: rapeseed protein

Search Result 88, Processing Time 0.039 seconds

Diurnal Patterns in the Flow of Escapable Soluble Non-Ammonia Nitrogen Fractions in Omasal Digesta as Influenced by Barley and Rapeseed Meal Supplementation in Cows Fed Grass Silage Based Diet (목초 사일리지 급여 시 보리와 채종박 보충급여에 의한 제 3위 소화액내 Soluble Non-ammonia Nitrogen Fraction의 Flow 패턴 변화)

  • Choi, C.W.
    • Journal of Animal Science and Technology
    • /
    • v.49 no.3
    • /
    • pp.341-350
    • /
    • 2007
  • The present study was conducted to measure diurnal patterns in the flow of soluble non-ammonia nitrogen (SNAN) fractions in the liquid phase of digesta entering the omasum of cows fed grass-red clover silage supplemented with barley and rapeseed meal. Four ruminally cannulated cows were fed, in a 4×4 Latin square design, grass-red clover silage alone (GS) or supplemented with (on a DM basis) 6.0kg/d of barley grain, 2.1kg/d of rapeseed meal or 6.0kg/d of barley and 2.1kg/d rapeseed meal. Omasal digesta was taken using an omasal sampling system at 1.5h intervals during a 12h feeding cycle, and SNAN fractions (free AA, peptide and soluble protein) in the omasal digesta were assessed using ninhydrin assay. Dietary supplementation numerically increased the mean flow of SNAN fractions relative to GS diet despite the lack of statistical significance. Diurnal patterns in the flow of peptide entering the omasum during a 12h feeding cycle appeared to be highest immediately after feeding, declined by 10.0h post-feeding and slightly increased thereafter. In SNAN fractions, the flow of peptide was higher for supplemented diets than for GS diet throughout the feeding cycle. Based on the microbial contribution to total SNAN using 15N, diurnal patterns in the flow of dietary SNAN for dietary supplemented diets appeared to be higher compared with GS diets. Present results may conclude that peptide flow is quantitatively the most important N in SNAN fractions and that dietary supplementation can increase peptide flow entering the omasal canal.

Molecular Cloning of Two Genes Encoding Cinnamate 4-Hydroxylase (C4H) from Oilseed Rape (Brassica napus)

  • Chen, An-He;Chai, You-Rong;Li, Jia-Na;Chen, Li
    • BMB Reports
    • /
    • v.40 no.2
    • /
    • pp.247-260
    • /
    • 2007
  • Cinnamate 4-hydroxylase (C4H) is a key enzyme of phenylpropanoid pathway, which synthesizes numerous secondary metabolites to participate in development and adaption. Two C4H isoforms, the 2192-bp BnC4H-1 and 2108-bp BnC4H-2, were cloned from oilseed rape (Brassica napus). They both have two introns and a 1518-bp open reading frame encoding a 505-amino-acid polypeptide. BnC4H-1 is 57.73 kDa with an isoelectric point of 9.11, while 57.75 kDa and 9.13 for BnC4H-2. They share only 80.6% identities on nucleotide level but 96.6% identities and 98.4% positives on protein level. Showing highest homologies to Arabidopsis thaliana C4H, they possess a conserved p450 domain and all P450-featured motifs, and are identical to typical C4Hs at substrate-recognition sites and active site residues. They are most probably associated with endoplasmic reticulum by one or both of the N- and C-terminal transmembrane helices. Phosphorylation may be a necessary post-translational modification. Their secondary structures are dominated by alpha helices and random coils. Most helices locate in the central region, while extended strands mainly distribute before and after this region. Southern blot indicated about 9 or more C4H paralogs in B. napus. In hypocotyl, cotyledon, stem, flower, bud, young- and middle-stage seed, they are co-dominantly expressed. In root and old seed, BnC4H-2 is dominant over BnC4H-1, with a reverse trend in leaf and pericarp. Paralogous C4H numbers in Brassicaceae genomes and possible roles of conserved motifs in 5' UTR and the 2nd intron are discussed.

Prediction of net energy values in expeller-pressed and solvent-extracted rapeseed meal for growing pigs

  • Li, Zhongchao;Lyu, Zhiqian;Liu, Hu;Liu, Dewen;Jaworski, Neil;Li, Yakui;Lai, Changhua
    • Animal Bioscience
    • /
    • v.34 no.1
    • /
    • pp.109-118
    • /
    • 2021
  • Objective: The objective of this study was to determine net energy (NE) of expeller-press (EP-RSM) and solvent-extracted rapeseed meal (SE-RSM) and to establish equations for predicting the NE in rapeseed meal (RSM) fed to growing pigs. Methods: Thirty-six barrows (initial body weight [BW], 41.1±2.2 kg) were allotted into 6 diets comprising a corn-soybean meal basal diet and 5 diets containing 19.50% RSM added at the expense of corn and soybean meal. The experiment had 6 periods and 6 replicate pigs per diet. During each period, the pigs were individually housed in metabolism crates for 16 days which included 7 days for adaption to diets. On day 8, pigs were transferred to respiration chambers and fed their respective diet at 2,000 kJ metabolizable energy (ME)/kg BW0.6/d. Feces and urine were collected, and daily heat production was measured from day 9 to 13. On days 14 and 15, the pigs were fed at 890 kJ ME/kg BW0.6/d and fasted on day 16 for evaluation of fasting heat production (FHP). Results: The FHP of pigs averaged 790 kJ/kg BW0.6/d and was not affected by the diet composition. The NE values were 10.80 and 8.45 MJ/kg DM for EP-RSM and SE-RSM, respectively. The NE value was positively correlated with gross energy (GE), digestible energy (DE), ME, and ether extract (EE). The best fit equation for NE of RSM was NE (MJ/kg DM) = 1.14×DE (MJ/kg DM)+0.46×crude protein (% of DM)-25.24 (n = 8, R2 = 0.96, p<0.01). The equation NE (MJ/kg DM) = 0.22×EE (% of DM)-0.79×ash (% of DM)+14.36 (n = 8, R2 = 0.77, p = 0.018) may be utilized to quickly determine the NE in RSM when DE or ME values are unavailable. Conclusion: The NE values of EP-RSM and SE-RSM were 10.80 and 8.45 MJ/kg DM. The NE value of RSM can be well predicted based on energy content (GE, DE, and ME) and proximate analysis.

Rumen Degradability and Small Intestinal Digestibility of the Amino Acids in Four Protein Supplements

  • Wang, Y.;Jin, L.;Wen, Q.N.;Kopparapu, N.K.;Liu, J.;Liu, X.L.;Zhang, Y.G.
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.29 no.2
    • /
    • pp.241-249
    • /
    • 2016
  • The supplementation of livestock feed with animal protein is a present cause for public concern, and plant protein shortages have become increasingly prominent in China. This conflict may be resolved by fully utilizing currently available sources of plant protein. We estimated the rumen degradability and the small intestinal digestibility of the amino acids (AA) in rapeseed meal (RSM), soybean meal (SBM), sunflower seed meal (SFM) and sesame meal (SSM) using the mobile nylon bag method to determine the absorbable AA content of these protein supplements as a guide towards dietary formulations for the dairy industry. Overall, this study aimed to utilize protein supplements effectively to guide dietary formulations to increase milk yield and save plant protein resources. To this end, we studied four cows with a permanent rumen fistula and duodenal T-shape fistula in a $4{\times}4$ Latin square experimental design. The results showed that the total small intestine absorbable amino acids and small intestine absorbable essential amino acids were higher in the SBM (26.34% and 13.11% dry matter [DM], respectively) than in the SFM (13.97% and 6.89% DM, respectively). The small intestine absorbable Lys contents of the SFM, SSM, RSM and SBM were 0.86%, 0.88%, 1.43%, and 2.12% (DM basis), respectively, and the absorbable Met contents of these meals were 0.28%, 1.03%, 0.52%, and 0.47% (DM basis), respectively. Among the examined food sources, the milk protein score of the SBM (0.181) was highest followed by those of the RSM (0.136), SSM (0.108) and SFM (0.106). The absorbable amino acid contents of the protein supplements accurately reflected protein availability, which is an important indicator of the balance of feed formulation. Therefore, a database detailing the absorbable AA should be established.

Changes in in vivo ruminal fermentation patterns and blood metabolites by different protein fraction-enriched feeds in Holstein steers

  • Choi, Chang Weon
    • Korean Journal of Agricultural Science
    • /
    • v.44 no.3
    • /
    • pp.392-399
    • /
    • 2017
  • The present study was conducted to investigate the effects of different dietary proteins as fraction-enriched protein, defined by Cornell net carbohydrates and protein system (CNCPS), on in vivo ruminal fermentation pattern and blood metabolites in Holstein steers fed total mixed ration (TMR) containing 17.2% crude protein. Four ruminally cannulated Holstein steers in a $4{\times}4$ Latin square design consumed TMR only (control) and TMR with rapeseed meal (AB1), soybean meal (B2), and perilla meal (B3C). Each protein was substituted for 23.0% of crude protein in TMR. Rumen digesta were taken through ruminal cannula at 1 h interval during the feeding cycle in order to analyze ruminal pH, ammonia-N, and volatile fatty acids (VFA). Plasma metabolites in blood taken via the jugular vein after the rumen digesta sampling were analyzed. Feeding perilla meal significantly (p < 0.05) decreased mean ruminal pH compared with control and the other protein feeding groups. Compared with control, feeding protein significantly (p < 0.05) increased ruminal ammonia-N concentration except for AB1. Statistically (p > 0.05) similar total VFA appeared among control and the supplemented groups. However, control, AB1, and B2 showed higher (p < 0.05) acetate concentrations than B3C, and propionate was vice versa. CNCPS fractionated protein significantly (p < 0.05) affected concentrations of albumin and total protein in blood; i.e. plasma albumin was lower for control and B2 groups than AB1 and B3C groups. Despite lack of significances (p > 0.05) in creatinine and blood urea nitrogen, AB1 and B2 groups were numerically higher than the others.

Effect of Changes in Targeted Milk Fat and Protein Contents on Feed Cost: a Simulation Modeling Approach (유지방율과 유단백율 증감이 사료비에 미치는 영향: 시뮬레이션 모델을 이용한 접근)

  • Lee, Se-Young;Bae, Gui-Seck;Park, Jong-Soo;Seo, Seong-Won
    • Korean Journal of Agricultural Science
    • /
    • v.37 no.2
    • /
    • pp.245-248
    • /
    • 2010
  • This study was conducted to investigate effect of changes in target fat and protein contents in milk on feed cost using a simulation modeling approach based on the 2001 dairy NRC. Two simulations were done; simulation I had a limitation (up to 20%), but simulation II had no limitation for the use of cottonseed hull in a diet. Using commonly used feed ingredients in Korea, we formulated least cost diets that meet nutrient requirement of a lactating dairy cow producing 36 kg of milk with combinations of 0.1% decrease or 0.1% increase in target milk fat or protein, respectively, from the national average milk fat (4.0%) and milk protein (3.1%). The contents of alfalfa and corn in a least-cost diet were decreased and those of tall fescue, whole cottonseed and rapeseed meal were increased with decreasing fat and/or increasing protein in milk. Scenarios that decreased target milk fat percentage from 4.0% to 3.9% reduced feed cost by 2 won per kg. Due to decrease in feed intake, daily feed cost was even more reduced (136 won per head) by decreasing target milk fat percentage. Increase in target milk protein percentage from 3.1% to 3.2% reduced feed cost by 6 won per kg. Among scenarios simulated, the least feed cost was obtained in scenario aimed for 3.9% fat and 3.2% of protein in milk. We conclude that a feeding practice for increasing milk protein percentage does not directly increase feed cost. In addition, feeding practices that increase protein content in milk is expected to improve economic life-span and reproductive performance of dairy cows.

Effect of dietary protein sources on production performance, egg quality, and plasma parameters of laying hens

  • Wang, Xiaocui;Zhang, Haijun;Wang, Hao;Wang, Jing;Wu, Shugeng;Qi, Guanghai
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.30 no.3
    • /
    • pp.400-409
    • /
    • 2017
  • Objective: This study was conducted to evaluate the effects of dietary protein sources (soybean meal, SBM; low-gossypol cottonseed meal, LCSM; double-zero rapeseed meal, DRM) on laying performance, egg quality, and plasma parameters of laying hens. Methods: A total of 432 32-wk-old laying hens were randomly divided into 6 treatments with 6 replicates of 12 birds each. The birds were fed diets containing SBM, $LCSM_{100}$, or $DRM_{100}$ individually or in combination with an equal amount of crude protein (CP) ($LCSM_{50}$, $DRM_{50}$, and $LCSM_{50}-DRM_{50}$). The experimental diets, which were isocaloric (metabolizable energy, 11.11 MJ/kg) and isonitrogenous (CP, 16.5%), had similar digestible amino acid profile. The feeding trial lasted 12 weeks. Results: The daily egg mass was decreased in the $LCSM_{100}$ and $LCSM_{50}-DRM_{50}$ groups (p<0.05) in weeks 41 to 44. The $LCSM_{50}$ group did not affect egg production compared to the SBM group in weeks 41 to 44 (p>0.05) and showed increased yolk color at the end of the trial (p<0.05). Compared to the SBM group, the $LCSM_{100}$ and $LCSM_{50}-DRM_{50}$ groups showed decreased albumen weight (p<0.05), CP weight in the albumen (p<0.05) and CP weight in the whole egg (p<0.05) at 44 weeks. Plasma total protein (TP) levels were lower in the $LCSM_{100}$ group than in the SBM group at 44 weeks (p<0.05); however, TP, albumin, and globulin levels were not significantly different between the $LCSM_{50}$ group and the SBM group or between the $DRM_{50}$ group and the SBM group (p>0.05). Conclusion: Together, our results suggest that the $LCSM_{100}$ or $DRM_{100}$ diets may produce the adverse effects on laying performance and egg quality after feeding for 8 more weeks. The 100.0 g/kg LCSM diet or the 148.7 g/kg DRM diet has no adverse effects on laying performance and egg quality.

Apparent digestibility coefficients of plant feed ingredients for olive flounder (Paralichthys olivaceus)

  • Mostafizur Rahman;Buddhi E. Gunathilaka;Sang-Guan You;Kang-Woong Kim;Sang-Min Lee
    • Fisheries and Aquatic Sciences
    • /
    • v.26 no.2
    • /
    • pp.87-96
    • /
    • 2023
  • This study was designed to determine the apparent digestibility coefficients of soybean meal, soy protein concentrate (SPC), soy protein isolate (SPI), rapeseed meal (RSM), pea protein concentrate (PPC), wheat gluten meal (WGM) and wheat flour (WF) for olive flounder, Paralichthys olivaceus. A reference diet (RF) was formulated to meet the nutrient requirements of olive flounder with 1% chromic oxide (Cr2O3) as an inert indicator. Test diets were prepared to contain 70% RF and 30% of the test ingredient. Olive flounder, averaging 150 ± 8.0 g, was cultured in 400-L fiberglass tanks at a density of 25 fish per tank. Fecal collection columns were attached to each tank. Fecal samples were obtained from triplicate groups of fish for 4 weeks. Dry matter digestibility of SPC (75%) and WGM (76%) were significantly higher than the other test ingredients. Protein digestibility of SPC (85%), PPC (88%) and WGM (89%) were significantly higher than the other test ingredients, and protein digestibility of RSM (77%) and WF (76%) was lower than the other ingredients tested. Lipid digestibility of SPC (72%) and SPI (69%) were significantly higher than the other test ingredients. Energy digestibility of SPC (85%) and WGM (82%) were significantly higher than that of others tested ingredients. The availability of amino acids in WGM was generally higher than in other plant-feed ingredients. Therefore, SPC and WGM were seems to be efficient as potential protein sources for olive flounder compared to other tested ingredients. Overall, findings of the current study may assist in more efficient and economical formulation of diets using plant feed ingredients for olive flounder.

Portal Absorption of Feed Oligo-peptides in Chickens

  • Wang, Lijuan;Ma, Qiugang;Cheng, Ji;Guo, Baohai;Yue, Hongyuan
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.17 no.9
    • /
    • pp.1277-1280
    • /
    • 2004
  • The effect of duodenal infusion with feed oligo-peptide solution on portal absorption of amino acids was investigated in poultry under unanaesthetized conditions. Four peptide solutions were used in the experiment: enzymatic hydrolysates from fish meal, soybean meal, cottonseed meal and rapeseed meal proteins with average molecular weights less than 3,000 Da and 1,000 Da, respectively. Intestinal absorptions of these oligo-peptide solutions were compared by determining the concentration of free amino acid (FAA) in portal blood after the duodenal administrations of oligo-peptide solutions. Absorptive intensity and balance were used to estimate the intestinal absorption rate of amino acids. The absorptive intensities of amino acids were highest for the fish and soybean meal oligo-peptides. The ratios of amino acids absorbed in the portal blood from fish and soybean meal oligo-peptides were more similar to the composition of the infused amino acids than that observed from the cottonseed and rapeseed meal oligo-peptides. A positive correlation was found between absorption rate and proportion of PAA in the oligo-peptides. The higher absorption rate could be contributed to the higher proportion of peptide bound amino acids (PAA). The results suggest that fish and soybean meal protein are significantly more easily hydrolyzed into oligo-peptides (p<0.05) in the gastrointestinal tracts of poultry and as such can be utilized more effectively by body tissues.

Effect of Seeding Rate on Growth, Yield and Chemical Composition of Forage Rape Cultivars

  • Cho, Nam-Ki;Jin, Woo-Jong;Kang, Young-Kil;Kang, Bong-Kyoon;Park, Yang-Mun
    • KOREAN JOURNAL OF CROP SCIENCE
    • /
    • v.43 no.1
    • /
    • pp.54-58
    • /
    • 1998
  • Four introduced forage rape cultivars 'Akela', 'Ramon', 'Sparta', and 'Velox' and a leading rapeseed cultivar Hall-ayuchae were seeded on 1 October 1994 on 20-cm rows at seeding rates of 3, 5, 7, 10, 13, and IS kg/ha to select the best adapted forage rape cultivars and to determine the optimum seeding rate in the Cheju area. Days to flowering of each cultivar was not significantly affected by seeding rate. Average plant height increased from 151 to 164 cm as seeding rate increased from 3 to 10 kg/ha and then decreased to 156 cm at 15 kg/ha. Stem diameter linearly decreased with increasing seeding rate. The optimum seeding rate for the greatest dry matter and protein yields of five cultivars ranged from 10.7 to 11.8 and 10.8 to 14.4 kg/ha, respectively. Dry matter yields of five cultivars ranged from 7.72 and 22.01 Mg/ha. Sparta produced the greatest dry matter yield, followed by Akela, Ramon, Hallayuchae, and Velox. Crude protein yields of five cultivars ranged from 0.29 to 1.08 Mg/ha. Sparta produced the greatest crude protein yield, followed by Akela, Ramon, Velox, and Hallayuchae. As seeding rate increased, crude protein content linearly increased but crude fiber content linearly decreased. The forage cultivars had higher crude protein and lower crude fiber than the oilseed cultivar Hallayuchae. Our results demonstrate that Sparta was the best adapted cultivar to Cheju area and the optimum seeding rate for Sparta was about 10 kg/ha.

  • PDF