• 제목/요약/키워드: rank-based method

검색결과 441건 처리시간 0.03초

Rank-based Control of Mutation Probability for Genetic Algorithms

  • Jung, Sung-Hoon
    • International Journal of Fuzzy Logic and Intelligent Systems
    • /
    • 제10권2호
    • /
    • pp.146-151
    • /
    • 2010
  • This paper proposes a rank-based control method of mutation probability for improving the performances of genetic algorithms (GAs). In order to improve the performances of GAs, GAs should not fall into premature convergence phenomena and should also be able to easily get out of the phenomena when GAs fall into the phenomena without destroying good individuals. For this, it is important to keep diversity of individuals and to keep good individuals. If a method for keeping diversity, however, is not elaborately devised, then good individuals are also destroyed. We should devise a method that keeps diversity of individuals and also keeps good individuals at the same time. To achieve these two objectives, we introduce a rank-based control method of mutation probability in this paper. We set high mutation probabilities to lowly ranked individuals not to fall into premature convergence phenomena by keeping diversity and low mutation probabilities to highly ranked individuals not to destroy good individuals. We experimented our method with typical four function optimization problems in order to measure the performances of our method. It was found from extensive experiments that the proposed rank-based control method could accelerate the GAs considerably.

트위터에서 형태소 분석과 PageRank 기반 화제단어 추출 방법 제안 (Proposal of keyword extraction method based on morphological analysis and PageRank in Tweeter)

  • 이원형;조성일;김동회
    • 디지털콘텐츠학회 논문지
    • /
    • 제19권1호
    • /
    • pp.157-163
    • /
    • 2018
  • SNS를 이용하는 사람들은 매일 자신의 다양한 생각을 SNS에 게시한다. SNS에 게시된 데이터는 수많은 사람들의 생각과 의견이 담겨있다고 할 수 있다. 특히 트위터에서 서비스되는 인기 화제어는 사용자가 올린 글에서 자주 등장한 단어의 횟수를 집계해 순위를 결정한다. 하지만 이와 같은 방법은 단순히 중복된 단어가 나열된 불필요한 데이터에 민감하다. 제안하는 방법은 단어간의 관계도를 이용한 단어의 화제성을 기반으로 순위를 결정하므로 불필요한 데이터의 영향을 적게 받고 주요단어를 안정적으로 추출할 수 있다. 성능 비교를 위하여 내림차순 화제어 순위와 상위 20개중에서 의미 없는 화제어의 비율 측면에서 형태소 분석과 PageRank 기반의 제안 방식과 단순 등장 횟수 기반의 기존 방식을 비교한다. 제안하는 방안과 기존 방안은 상위 20개중에서 무의미한 화제어를 각각 55%과 70%를 순위권에 포함시켰으며 제안한 방법이 기존 방법과 비교할 때 15% 정도 향상된다.

Penalized rank regression estimator with the smoothly clipped absolute deviation function

  • Park, Jong-Tae;Jung, Kang-Mo
    • Communications for Statistical Applications and Methods
    • /
    • 제24권6호
    • /
    • pp.673-683
    • /
    • 2017
  • The least absolute shrinkage and selection operator (LASSO) has been a popular regression estimator with simultaneous variable selection. However, LASSO does not have the oracle property and its robust version is needed in the case of heavy-tailed errors or serious outliers. We propose a robust penalized regression estimator which provide a simultaneous variable selection and estimator. It is based on the rank regression and the non-convex penalty function, the smoothly clipped absolute deviation (SCAD) function which has the oracle property. The proposed method combines the robustness of the rank regression and the oracle property of the SCAD penalty. We develop an efficient algorithm to compute the proposed estimator that includes a SCAD estimate based on the local linear approximation and the tuning parameter of the penalty function. Our estimate can be obtained by the least absolute deviation method. We used an optimal tuning parameter based on the Bayesian information criterion and the cross validation method. Numerical simulation shows that the proposed estimator is robust and effective to analyze contaminated data.

A New Efficient Impulse Noise Detection based on Rank Estimation

  • 오진성;김유남
    • 융합신호처리학회논문지
    • /
    • 제9권3호
    • /
    • pp.173-178
    • /
    • 2008
  • In this paper, we present a new impulsive noise detection technique. To remove the impulse noise without detail loss, only corrupted pixels must be filtered. In order to identify the corrupted pixels, a new impulse detector based on rank and value estimations of the current pixel is proposed. Based on the rank and value estimations of the current pixel, the new proposed method provides excellent statistics for detecting an impulse noise while reducing the probability of detecting image details as impulses. The proposed detection is efficient and can be used with any noise removal filter. Simulation results show that the proposed method significantly outperforms many other well-known detection techniques in terms of image restoration and noise detection.

  • PDF

Hybrid Projection 함수와 Rank Order 필터를 이용한 눈동자 검출 (Pupil Detection using Hybrid Projection Function and Rank Order Filter)

  • 장경식
    • 한국컴퓨터정보학회논문지
    • /
    • 제19권8호
    • /
    • pp.27-34
    • /
    • 2014
  • 이 논문에서는 hybrid projection 함수와 rank order 필터를 이용하여 눈동자를 검출하는 방법을 제안한다. 눈썹을 눈동자로 검출하는 오류를 줄이기 위하여, hybrid projection 함수를 이용하여 얼굴 영역에서 눈썹을 검출하고 눈썹이 포함되지 않도록 눈 영역을 설정한다. 눈 영역에서 rank order 필터를 사용하여 눈동자 후보점을 찾고 위치를 보정한다. 두 눈동자 후보점을 기하학적인 제약조건을 기반으로 쌍으로 묶고 각 쌍의 두 눈에 대한 유사도를 정합을 이용하여 측정하여가장작은값을 갖는 쌍을 최종눈동자로 결정한다. BioID 얼굴데이터베이스의 얼굴 영상 700개에 대한 실험 결과 92.4%의 검출율을 얻었으며 기존 방법보다 약 21.5% 개선된 결과를 얻었다.

Low-Rank Representation-Based Image Super-Resolution Reconstruction with Edge-Preserving

  • Gao, Rui;Cheng, Deqiang;Yao, Jie;Chen, Liangliang
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • 제14권9호
    • /
    • pp.3745-3761
    • /
    • 2020
  • Low-rank representation methods already achieve many applications in the image reconstruction. However, for high-gradient image patches with rich texture details and strong edge information, it is difficult to find sufficient similar patches. Existing low-rank representation methods usually destroy image critical details and fail to preserve edge structure. In order to promote the performance, a new representation-based image super-resolution reconstruction method is proposed, which combines gradient domain guided image filter with the structure-constrained low-rank representation so as to enhance image details as well as reveal the intrinsic structure of an input image. Firstly, we extract the gradient domain guided filter of each atom in high resolution dictionary in order to acquire high-frequency prior information. Secondly, this prior information is taken as a structure constraint and introduced into the low-rank representation framework to develop a new model so as to maintain the edges of reconstructed image. Thirdly, the approximate optimal solution of the model is solved through alternating direction method of multipliers. After that, experiments are performed and results show that the proposed algorithm has higher performances than conventional state-of-the-art algorithms in both quantitative and qualitative aspects.

복도 환경에서 로봇 위치추정의 랭크 결핍 문제 해결을 위한 적응적 샘플링 기반 파티클 필터링 기법 (Adaptive Sampling-Based Particle Filtering for Solving the Rank Deficiency Problem of Robot Localization in Corridor Environments)

  • 강수현;권유진;이헌철
    • 대한임베디드공학회논문지
    • /
    • 제19권4호
    • /
    • pp.175-184
    • /
    • 2024
  • This research addresses the problem of robot localization in corridor environments using LiDAR (Light Detection and Ranging). Due to the rank deficiency problem in scan matching with LiDAR alone, the accuracy of robot localization may degenerate seriously. This paper proposes an adaptive sampling-based particle filtering method using depth sensors to overcome the rank deficiency problem. The increase in the sample size in particle filters can be considered to solve the problem. But, it may cause much computation cost. In the proposed method, the sample size of the particle set in the proposed method is adjusted adaptively to the confidence of depth sensor data. The performance of the proposed method was test by real experiments in various environments. The experimental results showed that the proposed method was capable of reducing the estimation errors and more accurate than the conventional method.

Rank-weighted reconstruction feature for a robust deep neural network-based acoustic model

  • Chung, Hoon;Park, Jeon Gue;Jung, Ho-Young
    • ETRI Journal
    • /
    • 제41권2호
    • /
    • pp.235-241
    • /
    • 2019
  • In this paper, we propose a rank-weighted reconstruction feature to improve the robustness of a feed-forward deep neural network (FFDNN)-based acoustic model. In the FFDNN-based acoustic model, an input feature is constructed by vectorizing a submatrix that is created by slicing the feature vectors of frames within a context window. In this type of feature construction, the appropriate context window size is important because it determines the amount of trivial or discriminative information, such as redundancy, or temporal context of the input features. However, we ascertained whether a single parameter is sufficiently able to control the quantity of information. Therefore, we investigated the input feature construction from the perspectives of rank and nullity, and proposed a rank-weighted reconstruction feature herein, that allows for the retention of speech information components and the reduction in trivial components. The proposed method was evaluated in the TIMIT phone recognition and Wall Street Journal (WSJ) domains. The proposed method reduced the phone error rate of the TIMIT domain from 18.4% to 18.0%, and the word error rate of the WSJ domain from 4.70% to 4.43%.

분산분해와 뎁트랭크를 활용한 정보흐름에 기반으로 시스템 위험 측정에 관한 실증연구 (An Empirical Study on Measuring Systemic Risk Based on Information Flows using Variance Decomposition and DebtRank)

  • 박아영;김호용;오갑진
    • 한국경영과학회지
    • /
    • 제40권4호
    • /
    • pp.35-48
    • /
    • 2015
  • We analyze the systemic risk based on the information flows using the variance decomposition, DebtRank methods, and the Industry Sector Indices during 2001. 01 to 2015. 08. Using the KOSPI stock market as our setting, we find that (i) the systemic risk calculated by information flows of variance decompositions method shows strong positive relations with the market volatility, (ii) the magnitude of systemic risk measured from the information flows network by DebtRank method increases after the subprime financial crisis.

Nonparametric Tests in AB/BA/AA/BB Crossover Design

  • Nam, Jusun;Kim, Dongjae
    • Communications for Statistical Applications and Methods
    • /
    • 제9권3호
    • /
    • pp.607-618
    • /
    • 2002
  • Crossover design is often used in clinical trials about chronic diseases like hypertension, asthma and arthritis. In this paper, we suggest nonparametric approaches of Friedman-type rank test based on Bernard-van Elteren test and of aligned method keeping the information of blocks based on the AB/BA/AA/BB crossover design. The simulation results are presented to compare experimental error and power of several methods.