• Title/Summary/Keyword: rank additivity

Search Result 2, Processing Time 0.016 seconds

INJECTIVE LINEAR MAPS ON τ(F) THAT PRESERVE THE ADDITIVITY OF RANK

  • Slowik, Roksana
    • Bulletin of the Korean Mathematical Society
    • /
    • v.54 no.1
    • /
    • pp.277-287
    • /
    • 2017
  • We consider ${\tau}_{\infty}(F)$ - the space of upper triangular infinite matrices over a field F. We investigate injective linear maps on this space which preserve the additivity of rank, i.e., the maps ${\phi}$ such that rank(x + y) = rank(x) + rank(y) implies rank(${\phi}(x+y)$) = rank(${\phi}(x)$) + rank(${\phi}(y)$) for all $x,\;y{\in}{\tau}_{\infty}(F)$.

ADDITIVE OPERATORS PRESERVING RANK-ADDITIVITY ON SYMMETRY MATRIX SPACES

  • Tang, Xiao-Min;Cao, Chong-Guang
    • Journal of applied mathematics & informatics
    • /
    • v.14 no.1_2
    • /
    • pp.115-122
    • /
    • 2004
  • We characterize the additive operators preserving rank-additivity on symmetry matrix spaces. Let $S_{n}(F)$ be the space of all $n\;\times\;n$ symmetry matrices over a field F with 2, $3\;\in\;F^{*}$, then T is an additive injective operator preserving rank-additivity on $S_{n}(F)$ if and only if there exists an invertible matrix $U\;\in\;M_n(F)$ and an injective field homomorphism $\phi$ of F to itself such that $T(X)\;=\;cUX{\phi}U^{T},\;\forallX\;=\;(x_{ij)\;\in\;S_n(F)$ where $c\;\in;F^{*},\;X^{\phi}\;=\;(\phi(x_{ij}))$. As applications, we determine the additive operators preserving minus-order on $S_{n}(F)$ over the field F.