• Title/Summary/Keyword: range-based 기법

Search Result 1,064, Processing Time 0.028 seconds

Efficient Searching Technique for Nearest Neighbor Object in High-Dimensional Data (고차원 데이터의 효율적인 최근접 객체 검색 기법)

  • Kim, Jin-Ho;Park, Young-Bae
    • The KIPS Transactions:PartD
    • /
    • v.11D no.2
    • /
    • pp.269-280
    • /
    • 2004
  • The Pyramid-Technique is based on mapping n-dimensional space data into one-dimensional data and expresses it as a B+-tree. By solving the problem of search time complexity the pyramid technique also prevents the effect of "phenomenon of dimensional curse" which is caused by treatment of hypercube range query in n-dimensional data space. The SPY-TEC applies the space division strategy in pyramid method and uses spherical range query suitable for similarity search so that Improves the search performance. However, nearest neighbor query is more efficient than range query because it is difficult to specify range in similarity search. Previously proposed index methods perform well only in the specific distribution of data. In this paper, we propose an efficient searching technique for nearest neighbor object using PdR-Tree suggested to improve the search performance for high dimensional data such as multimedia data. Test results, which uses simulation data with various distribution as well as real data, demonstrate that PdR-Tree surpasses both the Pyramid-Technique and SPY-TEC in views of search performance.rformance.

Range Query Processing of Distributed Moving Object Databases using Scheduling Technique (스케쥴링 기법을 이용한 분산 이동 객체 데이타베이스의 범위 질의 처리)

  • Jeon, Se-Gil;Hwang, Jae-Il;Nah, Youn-Mook
    • Journal of Korea Spatial Information System Society
    • /
    • v.6 no.2 s.12
    • /
    • pp.51-62
    • /
    • 2004
  • Recently, the location-based service for moving customers is becoming one of the most important service in mobile communication area. For moving object applications, there are lots of update operations and such update loads are concentrated on some particular area unevenly. The primary processing of LBS application is spatio-temporal range queries. To improve the throughput of spatio-temporal range queries, the time of disk I/O in query processing should be reduced. In this paper, we adopt non-uniform two-level grid index structures of GALIS architecture,which are designed to minimize update operations. We propose query scheduling technique using spatial relationship and time relationship and a combined spatio-temporal query processing method using time zone concepts to improve the throughput of query processing. Some experimental results are shown for range queries with different query range to show the performance tradeoffs of the proposed methods.

  • PDF

Range and k-Nearest Neighbor Query Processing Algorithms using Materialization Techniques in Spatial Network Databases (공간 네트워크 데이터베이스에서 실체화 기법을 이용한 범위 및 k-최근접 질의처리 알고리즘)

  • Kim, Yong-Ki;Chowdhury, Nihad Karim;Lee, Hyun-Jo;Chang, Jae-Woo
    • Journal of Korea Spatial Information System Society
    • /
    • v.9 no.2
    • /
    • pp.67-79
    • /
    • 2007
  • Recently, to support LBS(location-based services) and telematics applications efficiently, there have been many researches which consider the spatial network instead of Euclidean space. However, existing range query and k-nearest neighbor query algorithms show a linear decrease in performance as the value of radius and k is increased. In this paper, to increase the performance of query processing algorithm, we propose materialization-based range and k-nearest neighbor algorithms. In addition, we make the performance comparison to show the proposed algorithm achieves better retrieval performance than the existing algorithm.

  • PDF

Design of Efficient frequency Offset Estimator for MB-OFDM based UWB Systems (MB-OFDM 기반 UWB 시스템을 위한 효율적인 주파수 옵셋 추정기의 설계)

  • Kim, Kil-Hwan;Jung, Yun-Ho;Kim, Jae-Seok
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.34 no.3C
    • /
    • pp.311-321
    • /
    • 2009
  • This paper proposes an efficient frequency offset estimation algorithm for MB-OFDM based UWB systems. The time-frequency interleaving in MB-OFDM extends the time-interval between two transmitted OFDM symbols in the same sub-band. The extended time-interval causes not only the degradation of the system performance by reducing frequency offset estimation range, but also the increase of the hardware complexity by requiring the larger number of storing samples. The proposed estimation algorithm expands the estimation range by applying the proposed sign detection scheme. Simulation results show that the estimation range is increased above 30 ppm compared with a conventional auto-correlation based scheme. The estimation is performed on only one sub-band, and the frequency offsets of the others are calculated by relation to center frequency. This way reduced the number of the storing samples by about l/3. The frequency offset estimator with the proposed algorithm was designed into the architecture which minimizes hardware overhead by time-sharing operators and memory units, and which was synthesized to gate-level circuits using $0.13{\mu}m$ CMOS technology, and the total gates were about 47K.

An Efficient Continuous Range Query Processing Through Grid based Query Indexing (그리드 기반의 질의 색인을 통한 효율적인 연속 영역 질의 처리)

  • Park, Yong-Hun;Bok, Kyoung-Soo;Yoo, Jae-Soo
    • The KIPS Transactions:PartD
    • /
    • v.14D no.5
    • /
    • pp.471-482
    • /
    • 2007
  • In this paper, we propose an efficient continuous range query processing scheme using a modified grid based query indexing to reduce storage spaces and to accelerate processing time. The proposed method has two major features. First, each query has a bit identifier and each cell in a grid has a bit pattern that consists of the bit identifiers of the queries. The bit patterns present the relationship between cells and queries. Using the bit patterns, we can compute quickly what queries overlap a cell in a grid and reduce the number of unnecessary operations by comparing the bit patterns without comparing the query identifiers when we compute the relation between cells and queries. Second, the management of cells in the grid by groups prevents from wasting the storage space through the increase of the length of the bit pattern and increasing the comparison costs of bit patterns. We show through the performance evaluation that the proposed method outperforms the existing methods.

Adaptive Range Aggregation Index Method for Efficient Spatial Range Query in Ubiquitous Sensor Networks (USN환경에서 효율적인 공간영역질의를 위한 적응형 영역 집계 인덱스 기법)

  • Li, Yan;Eo, Sang-Hun;Cho, Sook-Kyoung;Lee, Soon-Jo;Bae, Hae-Yeong
    • Journal of Korea Spatial Information System Society
    • /
    • v.9 no.2
    • /
    • pp.93-107
    • /
    • 2007
  • In this paper, an adaptive range aggregation spatial index method is proposed for spatial range query in ubiquitous sensor networks. As the ubiquitous sensor networks are the new information-oriented paradigm, many energy efficient spatial range query methods in ubiquitous sensor networks environment are studied vigorously. In sensor networks, users can monitor environment scalar data such as temperature and humidity during user defined time and spatial ranges. In order to execute spatial range query efficiently, rectangle based index methods are proposed, such as SPIX. But they define the return path as the opposite of its query transmit path. However, the sensor nodes in queried ranges are closed to each other, they can't aggregate the sensed value in a queried range because their query transmission paths are different. As a result, the previous methods waste energy unnecessarily to aggregate sensing data out of the queried range. In this paper, an adaptive aggregation index method is proposed that can aggregate values in a user defined range adaptively by using its neighbor information. It is shown that sensor power is saved efficiently by using the proposed method over the performance evaluation.

  • PDF

A Range-Free Localization Method using an RFID System -Applied to a Library Book Location System- (RFID 시스템을 이용한 거리 비종속 위치추정기법 -도서위치추정을 중심으로-)

  • Choi, Jung-Wook;Oh, Dong-Ik
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.11 no.2
    • /
    • pp.559-569
    • /
    • 2010
  • We propose an RFID system based on range-free localization method. This method recognizes pre-determined reference tags first, and then checks within which reference tag the target tag is placed closest. It estimates target tag's position relative to the reference tag's position. We use Aging Counter to estimate the distance between reference and target tags using the read ratio of RFID tags. Practicality of the proposed method is verified by applying it to a library book locating system.

Fast Integer-Pel Motion Estimation Based on Statistical Property for H.264/AVC (H.264/AVC를 위한 통계 특성 기반 정수 화소 단위 고속 움직임 예측 기법)

  • Noh, Jin-Young;Hong, Min-Cheol
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.37 no.8A
    • /
    • pp.669-678
    • /
    • 2012
  • In this paper, we propose an efficient fast integer-pel motion estimation for H.264/AVC using local statistics of local motion vectors. Using neighboring motion vectors, we define a new statistical property that is used to determine a mode of motion search range of current block. In addition, an adaptive motion search range compensated method that is based on cumulative statistics of previous coded blocks is addressed to solve the problem of the statistical motion search range decision method. Experimental results show that proposed algorithm has the capability to reduce the computational cost over the other methods.

Low-complexity Carrier Frequency Offset Estimation using A Novel Region Boundary for OFDM-based WLAN Systems (영역 경계 기법을 사용한 OFDM기반 WLAN 시스템의 반송파 주파수 오프셋 추정 기법)

  • Cho, Jong-Min;Kim, Jin-Sang;Cho, Won-Kyung
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.35 no.3A
    • /
    • pp.254-259
    • /
    • 2010
  • In this paper, we propose a low-complexity carrier frequency offset (CFO) estimation algorithm for OFDM based wireless LAN, IEEE 802.11a. The complexity of the arctangent operation to calculate the argument of auto-correlation for CFO estimation is reduced by a novel range pointer method. The proposed algorithm estimates fine CFO value first and then based on the fine CFO value, simple criteria is used for the boundary decision of integer CFO estimation. The simulation results show that the performance of the proposed algorithm is slightly better than the conventional method while the computational complexity is reduced by 50%. Furthermore, the proposed method can be easily implemented for the low complex next generation MIMO-OFDM based WLAN systems.

SDP-Based Adaptive Beamforming with a Direction Range (방향범위를 이용한 SDP 기반 적응 빔 형성)

  • Choi, Yang-Ho
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.39A no.9
    • /
    • pp.519-527
    • /
    • 2014
  • Adaptive arrays can minimize contributions from interferences incident onto an sensor array while preserving a signal the direction vector of which corresponds to the array steering vector to within a scalar factor. If there exist errors in the steering vector, severe performance degradation can be caused since the desired signal is misunderstood as an interference by the array. This paper presents an adaptive beamforming method which is robust against steering vector errors, exploiting a range of the desired signal direction. In the presented method, an correlation matrix of array response vectors is obtained through integration over the direction range and a minimization problem is formulated using some eigenvectors of the correlation matrix such that a more accurate steering vector than initially given one can be found. The minimization problem is transformed into a relaxed SDP (semidefinite program) problem, which can be effectively solved since it is a sort of convex optimization. Simulation results show that the proposed method outperforms existing ones such as ORM (outside-range-based method) and USM (uncertainty-based method).