• Title/Summary/Keyword: range sensor based localization

Search Result 91, Processing Time 0.031 seconds

Indoor Localization of a Mobile Robot Using External Sensor (외부 센서를 이용한 이동 로봇 실내 위치 추정)

  • Ko, Nak-Yong;Kim, Tae-Gyun
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.16 no.5
    • /
    • pp.420-427
    • /
    • 2010
  • This paper describes a localization method based on Monte Carlo Localization approach for a mobile robot. The method uses range data which are measured from ultrasound transmitting beacons whose locations are given a priori. The ultrasound receiver on-board a robot detects the range from the beacons. The method requires several beacons, theoretically over three. The method proposes a sensor model for the range sensing based on statistical analysis of the sensor output. The experiment uses commercialized beacons and detector which are used for trilateration localization. The performance of the proposed method is verified through real implementation. Especially, it is shown that the performance of the localization degrades as the sensor update rate decreases compared with the MCL algorithm update rate. Though the method requires exact location of the beacons, it doesn't require geometrical map information of the environment. Also, it is applicable to estimation of the location of both the beacons and robot simultaneously.

Low-Cost IR Sensor-based Localization Using Accumulated Range Information (누적된 거리정보를 이용하는 저가 IR 센서 기반의 위치추정)

  • Choi, Yun-Kyu;Song, Jae-Bok
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.15 no.8
    • /
    • pp.845-850
    • /
    • 2009
  • Localization which estimates a robot's position and orientation in a given environment is very important for mobile robot navigation. Although low-cost sensors are preferred for practical service robots, they suffer from the inaccurate and insufficient range information. This paper proposes a novel approach to increasing the success rate of low-cost sensor-based localization. In this paper, both the previous and the current data obtained from the IR sensors are used for localization in order to utilize as much environment information as possible without increasing the number of sensors. The sensor model used in the monte carlo localization (MCL) is modified so that the accumulated range information may be used to increase the accuracy in estimating the current robot pose. The experimental results show that the proposed method can robustly estimate the robot's pose in indoor environments with several similar places.

Incremental Strategy-based Residual Regression Networks for Node Localization in Wireless Sensor Networks

  • Zou, Dongyao;Sun, Guohao;Li, Zhigang;Xi, Guangyong;Wang, Liping
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.16 no.8
    • /
    • pp.2627-2647
    • /
    • 2022
  • The easy scalability and low cost of range-free localization algorithms have led to their wide attention and application in node localization of wireless sensor networks. However, the existing range-free localization algorithms still have problems, such as large cumulative errors and poor localization performance. To solve these problems, an incremental strategy-based residual regression network is proposed for node localization in wireless sensor networks. The algorithm predicts the coordinates of the nodes to be solved by building a deep learning model and fine-tunes the prediction results by regression based on the intersection of the communication range between the predicted and real coordinates and the loss function, which improves the localization performance of the algorithm. Moreover, a correction scheme is proposed to correct the augmented data in the incremental strategy, which reduces the cumulative error generated during the algorithm localization. The analysis through simulation experiments demonstrates that our proposed algorithm has strong robustness and has obvious advantages in localization performance compared with other algorithms.

A Modified Range-free localization algorithm for Wireless Sensor Networks (무선 센서 네트워크를 위한 개선된 Range-free 위치인식 알고리즘)

  • Ekale, Etinge Martin;Lee, Chaewoo
    • Proceedings of the Korea Information Processing Society Conference
    • /
    • 2010.11a
    • /
    • pp.829-832
    • /
    • 2010
  • Wireless Sensor Networks have been proposed for several location-dependent applications. For such systems, the cost and limitations of the hardware on sensing nodes prevent the use of range-based localization schemes that depend on absolute point to point distance estimates. Because coarse accuracy is sufficient for most sensor network applications, solutions in range-free localization are being pursued as a cost-effective alternative to more expensive range-based approaches. In this paper, we proposed a modified DV-Hop (range-free localization) algorithm which reduces node's location error and cumulated distance error by minimizing localization error. Simulation results have verified the high estimation accuracy with our approach which outperforms the classical DV-Hop.

Improvement of Localization Accuracy with COAG Features and Candidate Selection based on Shape of Sensor Data (COAG 특징과 센서 데이터 형상 기반의 후보지 선정을 이용한 위치추정 정확도 향상)

  • Kim, Dong-Il;Song, Jae-Bok;Choi, Ji-Hoon
    • The Journal of Korea Robotics Society
    • /
    • v.9 no.2
    • /
    • pp.117-123
    • /
    • 2014
  • Localization is one of the essential tasks necessary to achieve autonomous navigation of a mobile robot. One such localization technique, Monte Carlo Localization (MCL) is often applied to a digital surface model. However, there are differences between range data from laser rangefinders and the data predicted using a map. In this study, commonly observed from air and ground (COAG) features and candidate selection based on the shape of sensor data are incorporated to improve localization accuracy. COAG features are used to classify points consistent with both the range sensor data and the predicted data, and the sample candidates are classified according to their shape constructed from sensor data. Comparisons of local tracking and global localization accuracy show the improved accuracy of the proposed method over conventional methods.

A Range-Based Localization Algorithm for Wireless Sensor Networks

  • Zhang Yuan;Wu Wenwu;Chen Yuehui
    • Journal of Communications and Networks
    • /
    • v.7 no.4
    • /
    • pp.429-437
    • /
    • 2005
  • Sensor localization has become an essential requirement for realistic applications over wireless sensor networks (WSN). In this paper we propose an ad hoc localization algorithm that is infrastructure-free, anchor-free, and computationally efficient with reduced communication. A novel combination of distance and direction estimation technique is introduced to detect and estimate ranges between neighbors. Using this information we construct unidirectional coordinate systems to avoid the reflection ambiguity. We then compute node positions using a transformation matrix [T], which reduces the computational complexity of the localization algorithm while computing positions relative to the fixed coordinate system. Simulation results have shown that at a node degree of 9 we get $90\%$ localization with $20\%$ average localization error without using any error refining schemes.

Weighted Centroid Localization Algorithm Based on Mobile Anchor Node for Wireless Sensor Networks

  • Ma, Jun-Ling;Lee, Jung-Hyun;Rim, Kee-Wook;Han, Seung-Jin
    • Journal of Korea Spatial Information System Society
    • /
    • v.11 no.2
    • /
    • pp.1-6
    • /
    • 2009
  • Localization of nodes is a key technology for application of wireless sensor network. Having a GPS receiver on every sensor node is costly. In the past, several approaches, including range-based and range-free, have been proposed to calculate positions for randomly deployed sensor nodes. Most of them use some special nodes, called anchor nodes, which are assumed to know their own locations. Other sensors compute their locations based on the information provided by these anchor nodes. This paper uses a single mobile anchor node to move in the sensing field and broadcast its current position periodically. We provide a weighted centroid localization algorithm that uses coefficients, which are decided by the influence of mobile anchor node to unknown nodes, to prompt localization accuracy. We also suggest a criterion which is used to select mobile anchor node which involve in computing the position of nodes for improving localization accuracy. Weighted centroid localization algorithm is simple, and no communication is needed while locating. The localization accuracy of weighted centroid localization algorithm is better than maximum likelihood estimation which is used very often. It can be applied to many applications.

  • PDF

Localization Algorithm without Range Information in Wireless Sensor Networks

  • Lee, Byoung-Hwa;Lee, Woo-Yong;Eom, Doo-Seop
    • Journal of IKEEE
    • /
    • v.11 no.4
    • /
    • pp.297-306
    • /
    • 2007
  • A sensor network is composed of a large number of sensor nodes that are densely deployed in a field. Each sensor performs a sensing task for detection specific events. After detecting this event, location information of the sensor node is very important. Range-based scheme of the proposed approaches typically achieve high accuracy on either node-to-node distances or angles, but this scheme have a drawback because all sensor nodes have the special hardware. On the other hand, range-free scheme provides economic advantage because of no needed hardware even if that leads to coarse positioning accuracy. In this paper, we propose a range-free localization algorithm without range information in wireless sensor networks. This is a range-free approach and uses a small number of anchor nodes and known sensor nodes. This paper develops a localization mechanism using the geometry conjecture (perpendicular bisector of a chord). The conjecture states that a perpendicular bisector of a chord passes through the center of the circle.

  • PDF

A Range-Based Monte Carlo Box Algorithm for Mobile Nodes Localization in WSNs

  • Li, Dan;Wen, Xianbin
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.11 no.8
    • /
    • pp.3889-3903
    • /
    • 2017
  • Fast and accurate localization of randomly deployed nodes is required by many applications in wireless sensor networks (WSNs). However, mobile nodes localization in WSNs is more difficult than static nodes localization since the nodes mobility brings more data. In this paper, we propose a Range-based Monte Carlo Box (RMCB) algorithm, which builds upon the Monte Carlo Localization Boxed (MCB) algorithm to improve the localization accuracy. This algorithm utilizes Received Signal Strength Indication (RSSI) ranging technique to build a sample box and adds a preset error coefficient in sampling and filtering phase to increase the success rate of sampling and accuracy of valid samples. Moreover, simplified Particle Swarm Optimization (sPSO) algorithm is introduced to generate new samples and avoid constantly repeated sampling and filtering process. Simulation results denote that our proposed RMCB algorithm can reduce the location error by 24%, 14% and 14% on average compared to MCB, Range-based Monte Carlo Localization (RMCL) and RSSI Motion Prediction MCB (RMMCB) algorithm respectively and are suitable for high precision required positioning scenes.

The Parameter Identification for Localization Scheme of the Optics-Based Micro Sensor Node (광신호 기반의 마이크로 센서 노드 위치 인식 시스템을 위한 파라미터 식별)

  • Jeon, Ji-Hun;Lee, Min-Su;Park, Chan-Gook
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.19 no.2
    • /
    • pp.81-86
    • /
    • 2013
  • In this paper, the parameter identification for localization scheme for the optics-based micro sensor node is conducted. We analyzed short measurement range problem which can be occurred in optical based micro sensor node localization method using a time of flight. And we set up the theory for distance and maximum reflected laser power to overcome the problem by identifying hardware parameters like laser power, effective area of MEMS CCR, sensitivity of photodetector, and so on. Experimental results of measurement of maximum reflected laser power were compared with results of the theory. By using the theory, we can identify hardware parameters of localization scheme to measure particular position of the optics-based micro sensor node.