Journal of Korea Spatial Information System Society
/
v.8
no.2
s.17
/
pp.13-38
/
2006
Range query is one of the most important operations for spatial objects, it retrieves all spatial objects that overlap a given query region in multi-dimensional space. The DOT(DOuble Transformation) is known as an efficient indexing methods, it transforms the MBR of a spatial object into a single numeric value using a space filling curve, and stores the value in a $B^+$-tree. The DOT index is possible to be employed as a primary index for spatial objects. However, the range query processing based on the DOT index requires much overhead for spatial transformations to get the query region in the final space. Also, the detailed range query processing method for 2-dimensional spatial objects has not been studied yet in this paper, we propose an efficient multi-dimensional range query processing technique based on the DOT index. The proposed technique exploits the regularities in the moving patterns of space filling curves to divide a query region into a set of maximal sub-legions within which space filling curves traverse without interruption. Such division reduces the number of spatial transformations required to perform the range query and thus improves the performance of range query processing. A visual simulator is developed to show the evaluation method and the performance of our technique.
Recent applications on continuous queries on moving objects are extended quickly to various parts. These applications need not only 2-dimensional space data but also high-dimensional space data. If we use previous index for overlapped continuous range queries on high-dimensional space data, as the number of continuous range queries on a large number of moving objects becomes larger, their performance degrades significantly. We focus on stationary queries, non-exponential increase of storage cost and efficient processing time for large data sets. In this paper, to solve these problems, we present a novel query indexing method, denoted as PAB(Projected Attribute Bit)-based query index. We transfer information of high-dimensional continuous range query on each axis into one-dimensional bit lists by projecting technique. Also proposed query index supports incremental update for efficient query processing. Through various experiments, we show that our method outperforms the CES(containment-encoded squares)-based indexing method which is one of the most recent research.
Recently, the research on database outsourcing has been actively done with the popularity of cloud computing. However, because users' data may contain sensitive personal information, such as health, financial and location information, the data encryption methods have attracted much interest. Existing data encryption schemes process a query without decrypting the encrypted databases in order to support user privacy protection. On the other hand, to efficiently handle the large amount of data in cloud computing, it is necessary to study the distributed index structure. However, existing index structure and query processing algorithms have a limitation that they only consider single-column query processing. In this paper, we propose a grid-based multi column indexing scheme and an encrypted query processing algorithm. In order to support multi-column query processing, the multi-dimensional index keys are generated by using a space decomposition method, i.e. grid index. To support encrypted query processing over encrypted data, we adopt the Hilbert curve when generating a index key. Finally, we prove that the proposed scheme is more efficient than existing scheme for processing the exact and range query.
Journal of Korea Spatial Information System Society
/
v.9
no.2
/
pp.93-107
/
2007
In this paper, an adaptive range aggregation spatial index method is proposed for spatial range query in ubiquitous sensor networks. As the ubiquitous sensor networks are the new information-oriented paradigm, many energy efficient spatial range query methods in ubiquitous sensor networks environment are studied vigorously. In sensor networks, users can monitor environment scalar data such as temperature and humidity during user defined time and spatial ranges. In order to execute spatial range query efficiently, rectangle based index methods are proposed, such as SPIX. But they define the return path as the opposite of its query transmit path. However, the sensor nodes in queried ranges are closed to each other, they can't aggregate the sensed value in a queried range because their query transmission paths are different. As a result, the previous methods waste energy unnecessarily to aggregate sensing data out of the queried range. In this paper, an adaptive aggregation index method is proposed that can aggregate values in a user defined range adaptively by using its neighbor information. It is shown that sensor power is saved efficiently by using the proposed method over the performance evaluation.
KSII Transactions on Internet and Information Systems (TIIS)
/
v.13
no.2
/
pp.597-618
/
2019
Categorical range aggregation, which is conceptually equivalent to running a range aggregation query separately on multiple datasets, returns the query result on each dataset. The challenge is when the number of dataset is as large as hundreds or thousands, it takes a lot of computation time and I/O. In previous work, only a single dimension of the range restriction has been solved, and in practice, more applications are being used to calculate multiple range restriction statistics. We proposed MCRI-Tree, an index structure designed to solve multi-dimensional categorical range aggregation queries, which can utilize main memory to maximize the efficiency of CRA queries. Specifically, the MCRI-Tree answers any query in $O(nk^{n-1})$ I/Os (where n is the number of dimensions, and k denotes the maximum number of pages covered in one dimension among all the n dimensions during a query). The practical efficiency of our technique is demonstrated with extensive experiments.
Existing methods to process continuous range queries are not scalable. In particular, as the number of continuous range queries on a large number of moving objects becomes larger, their performance degrades significantly. We propose a novel query indexing method called the projected attribute bit (PAB)-based query index. We project a two-dimensional continuous range query on each axis to get two one-dimensional bit lists. Since the queries are transformed to bit lists and query evaluation is performed by bit operations, the storage cost of indexing and query evaluation time are reduced significantly. Through various experiments, we show that our method outperforms the containment-encoded squares-based indexing method, which is one of the most recently proposed methods.
Due to the proliferation of the Internet and intranet, new application domains such as stream data processing have emerged. Stream data is real-timely and continuously generated. In stream data environments, a lot of queries are registered, and then, the arrived data item is evaluated by registered queries. Thus, to accelerate the query performance, diverse continuous query index schemes have been proposed for stream data processing systems. In this paper, we focus on the query index technique for stream data. In general, a stream query contains the range condition. Thus, by using range conditions, the queries can be indexed. In this paper, we propose an efficient query index scheme, called QUISIS, using a modified Interval Skip Lists to accelerate search time. QUISIS utilizes a locality where a value which will arrive in near future is similar to the current value. Through the experimental study, we show the efficiency of our proposed method.
Kim, Jae-In;Song, Myung-Jin;Han, Dae-Young;Kim, Dae-In;Hwang, Bu-Hyun
The KIPS Transactions:PartD
/
v.16D
no.4
/
pp.507-516
/
2009
In stream data processing system, generally the interval queries are in advance registered in the system. When a data is input to the system continuously, for realtime processing, a query indexing method is used to quickly search queries. Thus, a main memory-based query index with a small storage cost and a fast search time is needed for searching queries. In this paper, we propose a LVC-based(Limited Virtual Construct-based) query index method using a hashing to meet the both needs. In LVC-based query index, we divide the range of a stream into limited virtual construct, or LVC. We map each interval query to its corresponding LVC and the query ID is stored on each LVC. We have compared with the CEI-based query indexing method through the simulation experiment. When the range of values of input stream is broad and there are many short interval queries, the LVC-based indexing method have shown the performance enhancement for the storage cost and search time.
Recently, advances in speed of the CPU have for out-paced advances in memory speed. Main-memory access is increasingly a performance bottleneck for main-memory database systems. To reduce memory access speed, cache memory have incorporated in the memory subsystem. However cache memories can reduce the memory speed only when the requested data is found in the cache. We propose a new cache sensitive T-tree index structure called as $CST^*$-tree for range query search. The $CST^*$-tree reduces the number of cache miss occurrences by loading the reduced internal nodes that do not have index entries. And it supports the sequential access of index entries for range query by connecting adjacent terminal nodes and internal index nodes. For performance evaluation, we have developed a cost model, and compared our $CST^*$-tree with existing CST-tree, that is the conventional cache sensitive T-tree, and $T^*$-tree, that is conventional the range query search T -tree, by using the cost model. The results indicate that cache miss occurrence of $CST^*$-tree is decreased by 20~30% over that of CST-tree in a single value search, and it is decreased by 10~20% over that of $T^*$-tree in a range query search.
Moving objects have characteristics that they change continuously their positions over time. The movement of moving objects should be stored on trajectories for processing past queries. Moving objects databases need to provide spatio-temporal index for handling moving objects queries like combined queries. Combined queries consist of a range query selecting trajectories within a specific range and a trajectory query extracting to parts of the whole trajectory. Access methods showing good performance in range queries have a shortcoming that the cost of processing trajectory Queries is high. On the other hand, trajectory-based index schemes like the TB-tree are not suitable for range queries because of high overlaps between index nodes. This paper proposes new TR(Trajectory Riving)-tree which is revised for efficiently processing the combined queries. This index scheme has several features like the trajectory preservation, the increase of the capacity of leaf nodes, and the logical trajectory riving in order to reduce dead space and high overlap between bounding boxes of nodes. In our Performance study, the number of node access for combined queries in TR-tree is about 25% less than the STR-tree and the TB-tree.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.