• Title/Summary/Keyword: range finder

Search Result 181, Processing Time 0.02 seconds

Local Map Building Using the information of a Range Finder (영역 검출기 정보를 이용한 지역 지도 작성)

  • Ko, Nak-Yong;Choi, Woong;Choi, Jung-Sang
    • Journal of the Korean Society of Manufacturing Technology Engineers
    • /
    • v.9 no.1
    • /
    • pp.102-110
    • /
    • 2000
  • This paper presents an algorithm of local map building for autonomous robot navigation using LASER range finder information. We develop a model of sensor output for a LASER range finder, and obtain an output data of the LASER range finder for a given environment. From the output data, a local map is obtained through the following procedures: (1) filtering of output data to remove noisy and unnecessary data, (2) comparison of filtered data with the original data to restore useful data, (3) thickening of the map obtained from the restored data, and (4) skeletonizing of the thickened map to get a final local map. Through some simulation studies, a map is obtained from the LASER range finder information for a given indoor environment, and is compared with the environment.

  • PDF

A study on the theoretical minimum resolution of the laser range finder (레이저 거리계의 이론적 최소 분해능에 관한 연구)

  • 차영엽;권대갑
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1996.10b
    • /
    • pp.644-647
    • /
    • 1996
  • In this study the theoretical minimum resolution analysis of an active vision system using laser range finder is performed for surrounding recognition and 3D data acquisition in unknown environment. The laser range finder consists of a slitted laser beam generator, a scanning mechanism, CCD camera, and a signal processing unit. A laser beam from laser source is slitted by a set of cylindrical lenses and the slitted laser beam is emitted up and down and rotates by the scanning mechanism. The image of laser beam reflected on the surface of an object is engraved on the CCD array. In the result, the resolution of range data in laser range finder is depend on distance between lens center of CCD camera and light emitter, view and beam angles, and parameters of CCD camera.

  • PDF

Motion Control of an Outdoor Patrol Robot using a Single Laser Range Finder (야외 순찰로봇을 위한 단일 레이저거리센서 기반 충돌 회피 주행 제어기법 개발)

  • Hong, Seung-Bohm;Shin, You-Jin;Chung, Woo-Jin
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.16 no.4
    • /
    • pp.361-367
    • /
    • 2010
  • This paper reports the development of a mobile robot for patrol using a single laser range finder. A Laser range finder is useful for outdoor environment regardless of illumination change or various weather conditions. In this paper we combined the motion control of the mobile robot and the algorithm for detecting the outdoor environment. For obstacle avoidance, we adopted the Vector Field Histogram algorithm. A laser range finder is mounted on the mobile robot and looking down the road with a small tilt angle. We propose an algorithm for detecting the surface of the road. The outdoor patrol robot platform is equipped with a DGPS system, a gyro-compass sensor, and a laser range finder. The proposed obstacle avoidance and road detection algorithms were experimentally tested in success.

Automatic Landing System using a Trajectory of Laser Beam (레이저 빔 궤적을 이용한 강인한 랜딩 시스템)

  • Hwang, Jin-Ah;Nam, Gi-Gun;Lee, Jang-Myung
    • Proceedings of the KIEE Conference
    • /
    • 2006.04a
    • /
    • pp.339-341
    • /
    • 2006
  • This paper proposes a method of container position measurement using automatic landing system that is estimated by a laser range finder. In the most of container position measurement methods, CCD cameras or laser scanners have been used to get the source data. However those sensors are not only weak for disturbances, for examples, the light, fog, and rain, but also the system cost is high. When the spreader arrives the goal position, it is still swung by inertia or by wind effect. In this paper, the spreader swung data have been used to find the container position. The laser range finder is equipped in the front side of spreader. It can measure distance and relative position between spreader and container. This laser range finder can be rotated as desired by a motor. And a tilt sensor is equipped on the spreader to measure spreader sway. We estimate the relative position information between the spreader and a container using the laser range finder and tilt sensor through the geometrical analysis.

  • PDF

Profile Management System of Material Piles by Dynamic Range Finding (동적 Range 검출에 의한 원료 Pile 형상 관리 시스템)

  • 안현식
    • Proceedings of the Korea Institute of Convergence Signal Processing
    • /
    • 2000.08a
    • /
    • pp.333-336
    • /
    • 2000
  • In this paper, a profile management system consisting of global and local range finders is presented for the automat ion of material pile handling. A global range finder detects range data of the front part of the piles of material and a profile map is obtained from a 3D profile detection algorithm. A local range finder attached on the side of the arm of the reclaimer detects range data with the handling function dynamically, and a local profile patch is acquired from the range data A yard profile map manager constructs a map by using the 3D profile of the global range finder and revises the map by replacing it with the local profile patch obtained Iron the local range finder. The developed vision system was applied to a simulator and the results of test show that it is appropriate to use for automating the material handling.

  • PDF

Design and Construction of Laser Range Finder for Many Purposes (다목적 레이저 거리측정기(Laser Range Finder) 설계 및 개발)

  • Lee, Jae-Woo
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.12 no.7
    • /
    • pp.3214-3219
    • /
    • 2011
  • Nowadays, we live in the age of highly developed information technology. The information industry is growing rapidly and it is making remarkable changes in our life. Among the information technologies, laser range finder can be used to measure distance in difficult environment. In this paper, we have designed and constructed the laser range finder for many purposes such as industry or leisure in difficult environment. Using the proposed laser range finder enables us to measure distance easily using timing discriminator between transmitter and receiver for industry or leisure.

Target Tracking System for an Intelligent Wheelchair Using Infrared Range-finder and CCD Camera (적외선 레인지파인더와 CCD 카메라를 이용한 지능 휠체어용 표적 추적 시스템)

  • Ha Yun-Su;Han Dong-Hee
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.29 no.5
    • /
    • pp.560-570
    • /
    • 2005
  • In this paper, we discuss the tracking system for a wheelchair which can follow the path of a human target such as a nurse in hospital. The problem of human tracking is that it requires recognition of feature as well as the tracking of human positions. For this purpose the use of a high cost visual sensor such as laser finder or streo camera makes the tracking a high cost additional expense. This paper proposes the tracking system uses a low cost infrared range-finder and CCD camera, The Infrared range-finder and CCD camera can create a target candidate through each target recognition algorithm. and this information is fused in order to reduce the uncertainties of a target decision and correct the positional error of the human. The effectiveness of the proposed system is verified through experiments.

A study on the characteristic analysis and correction of non-linear bias error of an infrared range finder sensor for a mobile robot (이동로봇용 적외선 레인지 파인더센서의 특성분석 및 비선형 편향 오차 보정에 관한 연구)

  • 하윤수;김헌희
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.27 no.5
    • /
    • pp.641-647
    • /
    • 2003
  • The use of infrared range-finder sensor as the environment recognition system for mobile robot have the advantage of low sensing cost compared with the use of other vision sensor such as laser finder CCD camera. However, it is not easy to find the previous works on the use of infrared range-finder sensor for a mobile robot because of the non-linear characteristic of that. This paper describes the error due to non-linearity of a sensor and the correction of it using neural network. The neural network consists of multi-layer perception and Levenberg-Marquardt algorithm is applied to learning it. The effectiveness of the proposed algorithm is verified from experiment.

Transparent Obstacle Detection Method based on Laser Range Finder (레이저 거리 측정기 기반 투명 장애물 인식 방법)

  • Park, Jung-Soo;Jung, Jin-Woo
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.24 no.2
    • /
    • pp.111-116
    • /
    • 2014
  • Using only laser range finder to detect the obstacles in an environment that contains transparent obstacles can not guarantee autonomous mobile robot from collision problem. To solve this problem, a mobile robot using laser range finder must be used additional sensor device such as sonar sensor that can detect the transparent obstacle. In this paper, a method is addressed to deal with the problem to detect the transparent obstacles within environment only by using laser range finder for mobile robot. In case the recognized transparent obstacle, the proposed algorithm is to localize the transparent obstacle to extract and process the reflected noise. This algorithm ensures autonomous of mobile robot only using laser range finder. The effectiveness of the proposed algorithm is evaluated by the real mobile robot and real laser range finder experiments with three case studies.

A study on the resolution of the laser range finder (레이저 거리계의 분해능에 관한 연구)

  • Cha, Yeong-Yeop;Yu, Chang-Mok
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.4 no.1
    • /
    • pp.82-87
    • /
    • 1998
  • In this study, the theoretical resolution analysis of an active vision system using laser range finder is performed for surrounding recognition and 3D data acquisition in unknown environment. In the result, the resolution of range data in laser range finder is depend on the distance between lens center of CCD camera and light emitter, view angle, beam angle, and parameters of CCD camera. The theoretical resolutions of the laser range finders of various types which are based on parameters effected resolution are calculated and experimental results are obtained in real system.

  • PDF