• Title/Summary/Keyword: randomized block design with replications

Search Result 174, Processing Time 0.023 seconds

Effects of Planting Date and Density on Yield and It’s Components of Fritillaria thungergii MIQUEL (패모(貝母)의 파종기(播種期) 및 재식밀도(栽植密度)가 수양구성(收量構成) 형질(形質) 및 수양(收量)에 미치는 영향(影響))

  • Choi, In-Sik;Cho, Jin-Tae;Son, Seok-Yong;Park, Jae-Seong;Han, Dong-Ho;Jeong, In-Myeong
    • Korean Journal of Medicinal Crop Science
    • /
    • v.4 no.3
    • /
    • pp.218-223
    • /
    • 1996
  • This experiment was carried out to investigate the effect of planting date and planting density on yield and yield components of Fritillariae bulbus from 1989 to 1991. The Chungbuk local variety was used, and the experimental materials were planted six times with 10 days interval from Aug. 20 to Oct. 10. 33, 22, 17 and 13 bulbs were planted by the square meter, respectively. The compound fertilizer for garlic $(N\;-\;P_2O\;-\;K_2O_5=9\;-\;14\;-\;10)$ was applied by 80kgs to the 0.1ha before planting. The experimental design was randomized block design with 3 replications. As the planting dates were earlier, the emerging dates were earlier, too. But the delay of 50 days in the planting affected to the delay of 14 days in the em­erging dates. The plant height was 22.7cms in the Aug. 20 plot. As the planting were later, the plant heights were shorter by $2.4{\sim}5.6cms$ than that. As compared with the 829kgs by the 0.1ha of Aug. 30 plot, the others recorded 1 percent increase in the Aug. 20 plot, 4 percent decrease in the Sep. 10 plot, 26 percent decrease in the Sep. 20 plot, 35 percent decrease in the Sep 30 plot, and 38 percent decrease in the Oct. 10 plot. So, the suitable planting dates were from Aug. 20 to Aug. 30.The emerging date of 33 bulb plot by the square meter was March 7, but as the planting densities were sparse, the emerging dates delayed by one to three days. The plant height of the 33 bulb plot by the square meter was 21. 8cms, but the other plots were short by $0.7{\sim}1.8cms$. The number of shoots of the 33 bulb plot by the square meter was 6.1. but the other plots recorded 0.4 increase in the 22 bulb plot, 0.6 increase in the 17 bulb plot and 0.5 increase in the 13 bulb plot compared with that of the 33 bulb plot. Accordingly, the number of shoots in the sparse planting plot was more than that in the dense planting plot. As compared with the 854kgs by the 0.1ha of the 22 bulb plot, the other plots recored 2 percent in­crease in the 33 bulb plot, 16 percent decrease in the 17 bulb plot and 34 percent decrease in the 13 bulb plot. All things considered, for the culture of Fritillaria thungergii MIQUEL in the middle region, Aug. 25 and 22 bulbs by the square meter were suitable for the planting date and density.

  • PDF

Studies on Genetic Analysis by the Diallel Crosses in $F_2$ Generation of Cowpea(Vigna sinensis savi.) (동부 Diallel Cross$ F_2$세대의 유전분석에 관한 연구)

  • Kim, J.H.;Ko, M.S.;Chang, K.Y.
    • KOREAN JOURNAL OF CROP SCIENCE
    • /
    • v.28 no.2
    • /
    • pp.216-226
    • /
    • 1983
  • Genetic studies on the $F_2$ generation of a set of half diallel crosses involving six cowpea varieties were conducted. by the randomized block design with three replications to determine combining ability, gene action and the relationships between parents and their $F_2$ hybrids. The 12 agronomic characters namely, days to flowering, days from flowering to maturity, days to maturity, diameter of stem, length of internode, number of branches per plant, length of pod, number of pods per plant, number of grains per pod, number of grains per plant, 100 grain weight and grain weight per plot were observed, and the $F_2$ generation of this diallel set of crosses was analysed for each character according to the method by Jinks and Hayman. The results obtained are summarized as follows: 1. Vr-Wr graphical analyses; The following seven characters, days to flowering, number of branches per plant, length of pod, number of pods per plant, number of grains per plant, 100 grain weight and grain weight per plot appeared to be partially dominant, and over dominance was found for days from flowering to maturity, days to maturity, length of internode and number of grains per pod. But diameter of stem indicated partial dominance near complete dominance. 2. Estimates of genetic variance components; In the degree of dominance,. eight characters, that is, days to flowering, days from flowering to maturity, days to maturity, length of internode, number of pods per plant, number of grains per pod, number of grains per plant and grain weight per plot were expressed larger than 1. And the characters, days from flowering to maturity, number of branches per plant and number of grains per plant as the degree of mean dominance ($H_1$/D) were found to be negative value over other characters. On the other hand, apprent asymmetry of dominance-recessive allele ($H_2$ /$4H_1$) produced comparatively estimates with lower value on days from flowering to maturity, length of internode, number of branches per plant and number of grains per pod. 3. Analyses of combining ability; Mean square value of GCA(general combining ability) appeared to be more important than those of SCA (specific combining ability) for most characters, and among them, grain weight per plot showed the highest mean square value in GCA and SCA. 4. Effect of combining ability; Variety 178 was expressed as the highest GCA effects in five characters (days to flowering days to maturity, number of pods per plant, number of grains per plant and grain weight per plot). SCA effects were differed from parents, characters and crosses, but crosses between TVu 1857 $\times$ TVu 2885 and TVu 2702 $\times$ J78 were shown to be highly with SCA effects on yield.

  • PDF

The Variation of Natural Population of Pinus densiflora S. et Z. in Korea (III) -Genetic Variation of the Progeny Originated from Mt. Chu-wang, An-Myon Island and Mt. O-Dae Populations- (소나무 천연집단(天然集團)의 변이(變異)에 관(關)한 연구(硏究)(III) -주왕산(周王山), 안면도(安眠島), 오대산(五臺山) 소나무집단(集團)의 차대(次代)의 유전변이(遺傳變異)-)

  • Yim, Kyong Bin;Kwon, Ki Won
    • Journal of Korean Society of Forest Science
    • /
    • v.32 no.1
    • /
    • pp.36-63
    • /
    • 1976
  • The purpose of this study is to elucidate the genetic variation of the natural forest of Pinus densiflora. Three natural populations of the species, which are considered to be superior quality phenotypically, were selected. The locations and conditions of the populations are shown in table 1 and 2. The morphological traits of tree and needle and some other characteristics were presented already in our first report of this series in which population and family differences according to observed characteristics were statistically analyzed. Twenty trees were sampled from each populations, i.e., 60 trees in total. During the autumn of 1974, matured cones were collected from each tree and open-pollinated seeds were extracted in laboratory. Immediately after cone collection, in closed condition, the morphological characteristics were measured. Seed and seed-wing dimensions were also studied. In the spring of 1975, the seeds were sown in the experimental tree nursery located in Suweon. And in the April of 1976, the 1-0 seedlings were transplanted according to the predetermined experimental design, randomized block design with three replications. Because of cone setting condition. the number of family from which progenies were raised by populations were not equal. The numbers of family were 20 in population 1. 18 in population 2 and 15 in population 3. Then, each randomized block contained seedlings of 53 families from 3 populations. The present paper is mainly concerned with the variation of some characteristics of cone, seed, needle, growth performance of seedlings, and chlorophyll and monoterpene compositions of needles. The results obtained are summerized as follows. 1. The meteorological data obtained by averaging the records of 30 year period, observed from the nearest station to each location of populations, are shown in Fig. 3, 4, and 5. The distributional pattern of monthly precipitation are quite similar among locations. However, the precipitation density on population 2, Seosan area, during growing season is lower as compared to the other two populations. Population 1. Cheong-song area, and population 3, Pyong-chang area, are located in inland, but population 2 in the western seacoast. The differences on the average monthly air temperatures and the average monthly lowest temperatures among populations can hardly be found. 2. Available information on the each mother trees (families) studied, such as age, stem height, diameter at breast height, clear-bole-length, crown conditions and others are shown in table 6,7, and 8. 3. The measurements of fresh cone weight, length and the widest diameter of cone are given in Tab]e 9. All these traits arc concerned with the highly significant population differences and family differences within population. And the population difference was also found in the cone-index, that is, length-diameter ratio. 4. Seed-wing length and seed-wing width showed the population differences, and the family differences were also found in both characteristics. Not discussed in this paper, however, seed-wing colours and their shapes indicate the specificity which is inherent to individual trees as shown in photo 3 on page 50. The colour and shape are fully the expression of genetic make up of mother tree. The little variations on these traits are resulted from this reason. The significant differences among populations and among families were found in those characteristics, such as 1000-seed weight, seed length, seed width, and seed thickness as shown in table 11. As to all these dimensions, the values arc always larger in population 1 which is younger in age than that of the other two. The population differences evaluated by cone, seed and seed-wing sizes could partly be attributed to the growth vigorousity. 5. The values of correlation between the characteristics of cone and seed are presented in table 12. As shown, the positive correlations between cone diameter and seed-wing width were calculated in all populations studied. The correlation between seed-wing length and seed length was significantly positive in population 1 and 3 but not in population 2, that is, the r-value is so small as 0.002. in the latter. The correlation between cone length and seed-wing length was highly significant in population 1, but not in population 2. 6. Differences among progenies in growth performances, such as 1-0 and 1-1 seedling height and root collar diameter were highly singificant among populations as well as families within population(Table 13.) 7. The heritability values in narrow sense of population characteristics were estimated on the basis of variance components. The values based on seedling height at each age stage of 1-1 and 1-0 ranged from 0.146 to 0.288 and the values of root collar diameter from 0.060 to 0.130. (Table 14). These heritability values varied according to characteristics and seedling ages. Here what must be stated is that, for calculation of heritability values, the variance values of population was divided by the variance value of environment (error) and family and population. The present authors want to add the heritability values based on family level in the coming report. It might be considered that if the tree age is increased in furture, the heritability value is supposed to be altered or lowered. Examining the heritability values studied previously by many authors, in pine group at age of 7 to 15, the values of height growth ranged from 0.2 to 0.4 in general. The values we obtained are further below than these. 8. The correlation between seedling growth and seed characteristics were examined and the values resulted are shown in table 16. Contrary to our hypothetical premise of positive correlation between 1-0 seedling height and seed weight, non-significance on it was found. However, 1-0 seedling height correlated positively with seed length. And significant correlations between 1-0 and 1-1 seedling height are calculated. 9. The numbers of stomata row calculated separately by abaxial and adaxial side showed highly significant differences among populations, but not in serration density. On serration density, the differences among families within population were highly significant. (Table 17) A fact must be noted is that the correlation between stomata row on abaxial side and adaxial side was highly significant in all populations. Non-significances of correlation coefficient between progenies and parents regarding to stomata row on abaxial side were shown in all populations studied.(Table 18). 10. The contents of chhlorophyll b of the needle were a little more than that of chlorophyll a irrespective of the populations examined. The differences of chlorophyll a, b and a plus b contents were highly significant but not among families within populations as shown in table 20. The contents of chlorophyll a and b are presented by individual trees of each populations in table 21. 11. The occurrence of monoterpene components was examined by gas liquid chromatography (Shimazu, GC-1C type) to evaluate the population difference. There are some papers reporting the chemical geography of pines basing upon monoterpene composition. The number of populations studied here is not enough to state this problem. The kinds of monoterpene observed in needle were ${\alpha}$-pinene, camphene, ${\beta}$-pinene, myrcene, limonene, ${\beta}$-phellandrene and terpinolene plus two unknowns. In analysis of monoterpene composition, the number of sample trees varied with population, I.e., 18 families for population 1, 15 for population 2 and 11 for population3. (Table 22, 23 and 24). The histograms(Fig. 6) of 7 components of monoterpene by population show noticeably higher percentages of ${\alpha}$-pinene irrespective of population and ${\beta}$-phellandrene in the next order. The minor Pinus densiflora monoterpene composition of camphene, myrcene, limonene and terpinolene made up less than 10 percent of the portion in general. The average coefficients of variation of ${\alpha}$-pinene and ${\beta}$-phellandrene were 11 percent. On the contrary to this, the average coefficients of variation of camphene, limonene and terpinolene varied from 20 to 30 percent. And the significant differences between populaiton were observed only in myrcene and ${\beta}$-phellandrene. (Table 25).

  • PDF

Genetic Analysis of Quantitative Characters of Rice (Oryza sativa L.) by Diallel Cross (이면교배(二面交配)에 의한 수도량적(水稻量的) 형질(形質)의 유전분석(遺傳分析)에 관(關)한 연구(硏究))

  • Jo, Jae-seong
    • Korean Journal of Agricultural Science
    • /
    • v.4 no.2
    • /
    • pp.254-282
    • /
    • 1977
  • To obtain information on the inheritance of the quantitative characters related with the vegetative and reproductive growth of rice, the $F_1$ seeds were obtained in 1974 from the all possible combinations of the diallel crosses among five leading rice varieties : Nongbaek, Tongil, Palgueng, Mangyeong and Gimmaze. The $F_1$'s including reciprocals and parents were grown under the standard cultivation method at Chungnam Provincial Office of Rural Development in 1975. The arrangement of experimental plots was randomized block design with 3 replications and 12 characters were used for the analysis. Analytical procedure for genetic components was followed the Griffing's and Hayman's methods and the results obtained are summarized as follows. 1. In all $F_1$'s of Tongil crosses, the longer duration to heading was due to dominant effect of Tongil and each $F_1$ showed high heterosis in delaying the heading time. It was assumed that non-allelic gene action besides dominant gene effect might be involed in days to heading character. However, in all $F_1$'s from the crosses among parents excluding Tongil the shorter duration was due to dominant gene action and the degree of dominance was partial, since dominance effects were not greater than the additive effect. The non-allelic gene interaction was not significant. Considering the results mentioned above, it was regarded that there were two kinds of Significantly different genetic systems in the days to heading. 2. The rate of heterosis was significantly different depending upon the parents used in the crosses. For instance, the $F_1$'s from Togil cross showed high rate of heterosis in longer culm. Compared to short culm, longer culm was due to recesive gene action and short culm was due to recesive gene action. The dominant gene effect was greater than the additive gene effect in culm length. The narrow sense of heretability was very low and the maternal effects as well as reciprocal effects were significantly recognized. 3. The lenght of the of the uppermost internode of each $F_1$ plant was a little lorger than these of respective parental means or same as those of parents having long internodes, indicating partial dominance in the direction of lengthening the uppermost internodes. The additive gene effects on the uppermost internode was greater than the dominance gene effect. The narrow as well as broad sense of heritabilities for the character of the uppermost internode were very high. There were significant maternal and reciprocal effect in the uppermost internode. 4. The gene action for the flag leaf angle was rather dominance in a way of getting narrower angle. However, in the Palgueng combinations, heterosis of $F_1$ was observed in both narrow and wide angles of the flag leaf. The dominant effects were greater than the additive effects on the flag leaf angle. There were observed also a great deal of non-allelic gene interacticn on the inheritance of the flag leaf angle. 5. Even though the dominant gene action on the length and width of flag leaf was effective in increasing the length or width of the flag leaf, there were found various degrees of hetercsis depending upon the cross combination. Over-dominant gene effect were observed in the inheritance of length of the flag leaf, while additive gene effects was found in the inheritance of the width of the flag leaf. High degree of heretabilities, either narrow or broad sense, were found in both length and width of the flag leaf. No maternal and reciprocal effect were found in both characters. 6. When Tongil was used as one parent in the cross, the length of panicle of $F_1$'s was remarkedly longer than that of parents. In other cross comination, the length of panicle of $F_1$'s was close to the parental mean values. Rather greater dominent gene effect than additive gene effect was observed in the inheritance of panicle length and the dominant gene was effective in increasing the panicle length. 7. The effect of dominant genes was effective in increasing the number of panicles. The degree of heterosis was largely dependent on the cross combination. The effect of dominant gene in the inheritance of panicle number was a little greater than that of additive genes, and the inheritance of panicle number was assumed to be due to complete dominant gene effects. Significantly high maternal and reciprocal effects were found in the character studied. 8. There were minus and plus values of heterosis in the kernel number per panicle depending upon the cross combination. The mean dominant effect was effective in increasing the kernel number per panicle, the degree of dominant effect varied with cross combination. The dominant gene effect and non-allelic gene interaction were found in the inheritance of the kernel number per panicle. 9. Genetic studies were impossible for the maturing ratio, because of environmental effects such as hazards delaying heads. The dominant gene effect was responsible for improving the maturing ratio in all the cross combinations excluding Tongil 10. The heavier 1000 grain weight was due to dominant gene effects. The additive gene effects were greater than the dominant gene effect in the 1000 grain weight, indicating that partial dominance was responsible for increasing the 1000 grain weight. The heritabilites, either narrow or broad sense of, were high for the grain weight and maternal or reciprocal effects were not recognized. 11. When Tongil was used as parent, the straw weight was showing high heterosis in the direction of increasing the weight. But in other crosses, the straw weight of $F_1$'s was lower than those of parental mean values. The direction of dominant gene effect was plus or minus depending upon the cross combinations. The degree of dominance was also depending on the cross combination, and apparently high nonallelic gene interaction was observed.

  • PDF