• 제목/요약/키워드: random sum

검색결과 253건 처리시간 0.024초

지식이전 선행요인에 관한 다차원 분석: 사회적 자본 이론과 사회연결망 이론의 결합 (Multi-level Analysis of the Antecedents of Knowledge Transfer: Integration of Social Capital Theory and Social Network Theory)

  • 강민형;허용석
    • Asia pacific journal of information systems
    • /
    • 제22권3호
    • /
    • pp.75-97
    • /
    • 2012
  • Knowledge residing in the heads of employees has always been regarded as one of the most critical resources within a firm. However, many tries to facilitate knowledge transfer among employees has been unsuccessful because of the motivational and cognitive problems between the knowledge source and the recipient. Social capital, which is defined as "the sum of the actual and potential resources embedded within, available through, derived from the network of relationships possessed by an individual or social unit [Nahapiet and Ghoshal, 1998]," is suggested to resolve these motivational and cognitive problems of knowledge transfer. In Social capital theory, there are two research streams. One insists that social capital strengthens group solidarity and brings up cooperative behaviors among group members, such as voluntary help to colleagues. Therefore, social capital can motivate an expert to transfer his/her knowledge to a colleague in need without any direct reward. The other stream insists that social capital provides an access to various resources that the owner of social capital doesn't possess directly. In knowledge transfer context, an employee with social capital can access and learn much knowledge from his/her colleagues. Therefore, social capital provides benefits to both the knowledge source and the recipient in different ways. However, prior research on knowledge transfer and social capital is mostly limited to either of the research stream of social capital and covered only the knowledge source's or the knowledge recipient's perspective. Social network theory which focuses on the structural dimension of social capital provides clear explanation about the in-depth mechanisms of social capital's two different benefits. 'Strong tie' builds up identification, trust, and emotional attachment between the knowledge source and the recipient; therefore, it motivates the knowledge source to transfer his/her knowledge to the recipient. On the other hand, 'weak tie' easily expands to 'diverse' knowledge sources because it does not take much effort to manage. Therefore, the real value of 'weak tie' comes from the 'diverse network structure,' not the 'weak tie' itself. It implies that the two different perspectives on strength of ties can co-exist. For example, an extroverted employee can manage many 'strong' ties with 'various' colleagues. In this regards, the individual-level structure of one's relationships as well as the dyadic-level relationship should be considered together to provide a holistic view of social capital. In addition, interaction effect between individual-level characteristics and dyadic-level characteristics can be examined, too. Based on these arguments, this study has following research questions. (1) How does the social capital of the knowledge source and the recipient influence knowledge transfer respectively? (2) How does the strength of ties between the knowledge source and the recipient influence knowledge transfer? (3) How does the social capital of the knowledge source and the recipient influence the effect of the strength of ties between the knowledge source and the recipient on knowledge transfer? Based on Social capital theory and Social network theory, a multi-level research model is developed to consider both the individual-level social capital of the knowledge source and the recipient and the dyadic-level strength of relationship between the knowledge source and the recipient. 'Cross-classified random effect model,' one of the multi-level analysis methods, is adopted to analyze the survey responses from 337 R&D employees. The results of analysis provide several findings. First, among three dimensions of the knowledge source's social capital, network centrality (i.e., structural dimension) shows the significant direct effect on knowledge transfer. On the other hand, the knowledge recipient's network centrality is not influential. Instead, it strengthens the influence of the strength of ties between the knowledge source and the recipient on knowledge transfer. It means that the knowledge source's network centrality does not directly increase knowledge transfer. Instead, by providing access to various knowledge sources, the network centrality provides only the context where the strong tie between the knowledge source and the recipient leads to effective knowledge transfer. In short, network centrality has indirect effect on knowledge transfer from the knowledge recipient's perspective, while it has direct effect from the knowledge source's perspective. This is the most important contribution of this research. In addition, contrary to the research hypothesis, company tenure of the knowledge recipient negatively influences knowledge transfer. It means that experienced employees do not look for new knowledge and stick to their own knowledge. This is also an interesting result. One of the possible reasons is the hierarchical culture of Korea, such as a fear of losing face in front of subordinates. In a research methodology perspective, multi-level analysis adopted in this study seems to be very promising in management research area which has a multi-level data structure, such as employee-team-department-company. In addition, social network analysis is also a promising research approach with an exploding availability of online social network data.

  • PDF

데이터 증강을 통한 딥러닝 기반 주가 패턴 예측 정확도 향상 방안 (Increasing Accuracy of Stock Price Pattern Prediction through Data Augmentation for Deep Learning)

  • 김영준;김여정;이인선;이홍주
    • 한국빅데이터학회지
    • /
    • 제4권2호
    • /
    • pp.1-12
    • /
    • 2019
  • 인공지능 기술이 발전하면서 이미지, 음성, 텍스트 등 다양한 분야에 적용되고 있으며, 데이터가 충분한 경우 기존 기법들에 비해 좋은 결과를 보인다. 주식시장은 경제, 정치와 같은 많은 변수에 의해 영향을 받기 때문에, 주식 가격의 움직임 예측은 어려운 과제로 알려져 있다. 다양한 기계학습 기법과 인공지능 기법을 이용하여 주가 패턴을 연구하여 주가의 등락을 예측하려는 시도가 있어왔다. 본 연구는 딥러닝 기법 중 컨볼루셔널 뉴럴 네트워크(CNN)를 기반으로 주가 패턴 예측률 향상을 위한 데이터 증강 방안을 제안한다. CNN은 컨볼루셔널 계층을 통해 이미지에서 특징을 추출하여 뉴럴 네트워크를 이용하여 이미지를 분류한다. 따라서, 본 연구는 주식 데이터를 캔들스틱 차트 이미지로 만들어 CNN을 통해 패턴을 예측하고 분류하고자 한다. 딥러닝은 다량의 데이터가 필요하기에, 주식 차트 이미지에 다양한 데이터 증강(Data Augmentation) 방안을 적용하여 분류 정확도를 향상 시키는 방법을 제안한다. 데이터 증강 방안으로는 차트를 랜덤하게 변경하는 방안과 차트에 가우시안 노이즈를 적용하여 추가 데이터를 생성하였으며, 추가 생성된 데이터를 활용하여 학습하고 테스트 집합에 대한 분류 정확도를 비교하였다. 랜덤하게 차트를 변경하여 데이터를 증강시킨 경우의 분류 정확도는 79.92%였고, 가우시안 노이즈를 적용하여 생성된 데이터를 가지고 학습한 경우의 분류 정확도는 80.98%이었다. 주가의 다음날 상승/하락으로 분류하는 경우에는 60분 단위 캔들 차트가 82.60%의 정확도를 기록하였다.

  • PDF

통계분석 및 전산모사 기법을 이용한 적응광학 시스템 성능 예측 (Performance Prediction for an Adaptive Optics System Using Two Analysis Methods: Statistical Analysis and Computational Simulation)

  • 한석기;주지용;이준호;박상영;김영수;정용석;정도환;허준;이기훈
    • 한국광학회지
    • /
    • 제33권4호
    • /
    • pp.167-176
    • /
    • 2022
  • 적응 광학(adaptive optics, AO)은 대기 외란을 실시간으로 보정하는 기술을 말하고, 이러한 적응광학의 효율적 개발을 위하여, 다양한 성능 예측 기법을 도입하여 적응광학이 적용된 시스템 성능 예측을 실시한다. 적응광학의 성능 예측 기법으로 자주 사용되는 기법으로는 통계분석, 전산모사 및 광학 벤치 테스트가 있다. 통계분석에서는 적응광학 시스템을 통계 분석 모델로 가정하여 오차값(분산)의 제곱을 전부 합쳐 스트렐비를 간단하게 추정한다. 다만, 하위 변수 간의 상관 관계는 무시되어 이에 따른 추정의 오류는 존재한다. 다음으로, 전산모사는 대기 난류, 파면센서, 변형거울, 폐쇄 루프 등 모든 구성요소를 가능한 한 실제와 가깝게 모델링하고, 시간 흐름에 따른 적응광학 시스템의 변화를 모두 구현하여 성능 예측을 수행한다. 다만, 전산모사 모델과 현실 사이에는 여전히 일부 차이가 있어, 광학 벤치 테스트를 통하여 시스템 성능을 확인한다. 최근 국내에서 개발된 변형 거울을 적용한 1.6 m 지상 망원경용 적응광학 시스템을 개발 중에 있어, 이에 적용 가능한 적응광학 시스템을 통하여 성능 예측 기법이 요구되며 동시에 성능 예측 기법의 비교를 진행하고자 한다. 앞서 언급된 통계분석 및 전산모사를 이용하여 시스템 성능 예측을 수행하였으며, 성능 예측의 분석을 위해 각각의 성능 예측 기법의 망원경 및 적응광학 시스템 모델링 과정 및 결과를 제시하였다. 이때 성능 예측을 위한 대기 조건으로는 보현산 관측 중앙값(median)을 적용하였다. 그 결과 통계 분석 방법의 경우 평균 스트렐 비가 0.31이 도출됨을 확인하였고, 전산모사 방법의 경우 평균 스트렐 비가 0.32를 가짐을 확인함으로써 두 방법에 의한 예측이 거의 유사함을 확인할 수 있었다. 추가적으로, 전산모사의 경우 해석 결과의 신뢰성을 확보하기 위하여, 모사 시간이 대기 임계 시간 상수의 약 240배인 0.9초 이상 수행되어야 함을 알 수 있었다.