• Title/Summary/Keyword: random network

Search Result 1,205, Processing Time 0.023 seconds

Shared Tree-based Multicast RP Re-Selection Scheme in High-Speed Internet Wide Area Network (고속 인터넷 환경에서 공유 트리 기반 멀티캐스트 RP 재선정 기법)

  • 이동림;윤찬현
    • The KIPS Transactions:PartC
    • /
    • v.8C no.1
    • /
    • pp.60-67
    • /
    • 2001
  • Multicast Protocol for multimedia service on the Internet can be classified into two types, e.g., source based tree and shared tree according to difference of tree construction method. Shared tree based multicast is known to show outstanding results in the aspect of scalability than source based tree. Generally, There have been lots of researches on the method to satisfy QoS constraints through proper Rendezvous Point (RP) in the shared tree. In addition, as the multicast group members join and leave dynamically in the service time, RP of the shared tree should b be reselected for guranteeing Qos to new member, But, RP reselection method has not been considered generally as the solution to satisfy QoS C constraints. In this paper, new initial RP selection and RP reselection method are proposed, which utilize RTCP (Real Time Control Protocol) report packet fields. Proposed initial RP selection and RP reselection method use RTCP protocol which underlying multimedia application service So, the proposed method does not need any special process for collecting network information to calculate RP. New initial RP selection method s shows better performance than random and topology based one by 40-50% in simulation. Also, RP reselection method improves delay p performance by 50% after initial RP selection according to the member’s dynamicity.

  • PDF

IoT Security Channel Design Using a Chaotic System Synchronized by Key Value (키값 동기된 혼돈계를 이용한 IoT의 보안채널 설계)

  • Yim, Geo-Su
    • The Journal of the Korea institute of electronic communication sciences
    • /
    • v.15 no.5
    • /
    • pp.981-986
    • /
    • 2020
  • The Internet of Things refers to a space-of-things connection network configured to allow things with built-in sensors and communication functions to interact with people and other things, regardless of the restriction of place or time.IoT is a network developed for the purpose of services for human convenience, but the scope of its use is expanding across industries such as power transmission, energy management, and factory automation. However, the communication protocol of IoT, MQTT, is a lightweight message transmission protocol based on the push technology and has a security vulnerability, and this suggests that there are risks such as personal information infringement or industrial information leakage. To solve this problem, we designed a synchronous MQTT security channel that creates a secure channel by using the characteristic that different chaotic dynamical systems are synchronized with arbitrary values in the lightweight message transmission MQTT protocol. The communication channel we designed is a method of transmitting information to the noise channel by using characteristics such as random number similarity of chaotic signals, sensitivity to initial value, and reproducibility of signals. The encryption method synchronized with the proposed key value is a method optimized for the lightweight message transmission protocol, and if applied to the MQTT of IoT, it is believed to be effective in creating a secure channel.

A Mesh Router Placement Scheme for Minimizing Interference in Indoor Wireless Mesh Networks (실내 무선 메쉬 네트워크에서의 간섭 최소화를 위한 메쉬 라우터 배치 기법)

  • Lee, Sang-Hwan
    • Journal of KIISE:Computing Practices and Letters
    • /
    • v.16 no.4
    • /
    • pp.421-426
    • /
    • 2010
  • Due to the ease of deployment and the extended coverage, wireless mesh networks (WMNs) are gaining popularity and research focus. For example, the routing protocols that enhance the throughput on the WMNs and the link quality measurement schemes are among the popular research topics. However, most of these works assume that the locations of the mesh routers are predetermined. Since the operators in an Indoor mesh network can determine the locations of the mesh routers by themselves, it is essential to the WMN performance for the mesh routers to be initially placed by considering the performance issues. In this paper, we propose a mesh router placement scheme based on genetic algorithms by considering the characteristics of WMNs such as interference and topology. There have been many related works that solve similar problems such as base station placement in cellular networks and gateway node selection in WMNs. However, none of them actually considers the interference to the mesh clients from non-associated mesh routers in determining the locations of the mesh routers. By simulations, we show that the proposed scheme improves the performance by 30-40% compared to the random selection scheme.

Energy Efficiency Enhancement of Macro-Femto Cell Tier (매크로-펨토셀의 에너지 효율 향상)

  • Kim, Jeong-Su;Lee, Moon-Ho
    • The Journal of the Institute of Internet, Broadcasting and Communication
    • /
    • v.18 no.1
    • /
    • pp.47-58
    • /
    • 2018
  • The heterogeneous cellular network (HCN) is most significant as a key technology for future fifth generation (5G) wireless networks. The heterogeneous network considered consists of randomly macrocell base stations (MBSs) overlaid with femtocell base stations (BSs). The stochastic geometry has been shown to be a very powerful tool to model, analyze, and design networks with random topologies such as wireless ad hoc, sensor networks, and multi- tier cellular networks. The HCNs can be energy-efficiently designed by deploying various BSs belonging to different networks, which has drawn significant attention to one of the technologies for future 5G wireless networks. In this paper, we propose switching off/on systems enabling the BSs in the cellular networks to efficiently consume the power by introducing active/sleep modes, which is able to reduce the interference and power consumption in the MBSs and FBSs on an individual basis as well as improve the energy efficiency of the cellular networks. We formulate the minimization of the power onsumption for the MBSs and FBSs as well as an optimization problem to maximize the energy efficiency subject to throughput outage constraints, which can be solved the Karush Kuhn Tucker (KKT) conditions according to the femto tier BS density. We also formulate and compare the coverage probability and the energy efficiency in HCNs scenarios with and without coordinated multi-point (CoMP) to avoid coverage holes.

Estimation of Dynamic Vertical Displacement using Artificial Neural Network and Axial strain in Girder Bridge (인공신경망과 축방향 변형률을 이용한 거더 교량의 동적 수직 변위 추정)

  • Ok, Su Yeol;Moon, Hyun Su;Chun, Pang-Jo;Lim, Yun Mook
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.34 no.6
    • /
    • pp.1655-1665
    • /
    • 2014
  • Dynamic displacements of structures shows general behavior of structures. Generally, It is used to estimate structure condition and trustworthy physical quantity directly. Especially, measuring vertical displacement which is affected by moving load is very important part to find or identify a problem of bridge in advance. However directly measuring vertical displacement of the bridge is difficult because of test conditions and restriction of measuring equipment. In this study, Artificial Neural Network (ANN) is used to suggest estimation method of bridge displacement to overcome constrain conditions, restriction and so on. Horizontal strain and vertical displacement which are measured by appling random moving load on the bridge are applied for learning and verification of ANN. Measured horizontal strain is used to learn ANN to estimate vertical displacement of the bridge. Numerical analysis is used to acquire learning data for axis strain and vertical displacement for applying ANN. Moving load scenario which is made by vehicle type and vehicle distance time using Pearson Type III distribution is applied to analysis modeling to reflect real traffic situation. Estimated vertical displacement in respect of horizontal strain according to learning result using ANN is compared with vertical displacement of experiment and it presents vertical displacement of experiment well.

Parent-Child Difference in Attitudes, Resources, and Constraints, and the Impacts of these Factors on Generational Proximity in the United States and Japan (노인 부모와 자녀 사이의 지리적 근접성에 대한 연구 : 미국과 일본의 사례를 중심으로)

  • 박경숙
    • Korea journal of population studies
    • /
    • v.20 no.2
    • /
    • pp.67-98
    • /
    • 1997
  • This study examines multi-level factors geographic proximities between elderly parents and their children in the United States and Japan. Despite their similar economies, the United States and Japan show a significant difference in their patterns of generational proximity. In 1993, half of US non-Hisapnic white parents aged 70 or over lived separately but within 10 miles of their nearest children and a majority of them lived far from their non-nearest children. The family geographic network for Japanese elderly parents is more hierarchial. In 1989, 74 percent of Japanese parents aged 70 and over lived with their nearest children but most of them lived far from their non-nearest children. To explain this distinctive pattern of inter- and intra-family differences in generational proximities in the two societies, this study employs a multi-level analysis which compares the relative importance of life course conditions of elderly parents and their children and economic and ecological characteristics of elderly parent's places of residence in influencing generational proximities.

  • PDF

Process Optimization of the Contact Formation for High Efficiency Solar Cells Using Neural Networks and Genetic Algorithms (신경망과 유전알고리즘을 이용한 고효율 태양전지 접촉형성 공정 최적화)

  • Jung, Se-Won;Lee, Sung-Joon;Hong, Sang-Jeen;Han, Seung-Soo
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.10 no.11
    • /
    • pp.2075-2082
    • /
    • 2006
  • This paper presents modeling and optimization techniques for hish efficiency solar cell process on single-crystalline float zone (FZ) wafers. Among a sequence of multiple steps of fabrication, the followings are the most sensitive steps for the contact formation: 1) Emitter formation by diffusion; 2) Anti-reflection-coating (ARC) with silicon nitride using plasma-enhanced chemical vapor deposition (PECVD); 3) Screen-printing for front and back metalization; and 4) Contact formation by firing. In order to increase the performance of solar cells in terms of efficiency, the contact formation process is modeled and optimized using neural networks and genetic algorithms, respectively. This paper utilizes the design of experiments (DOE) in contact formation to reduce process time and fabrication costs. The experiments were designed by using central composite design which consists of 24 factorial design augmented by 8 axial points with three center points. After contact formation process, the efficiency of the fabricated solar cell is modeled using neural networks. Established efficiency model is then used for the analysis of the process characteristics and process optimization for more efficient solar cell fabrication.

Detecting Adversarial Example Using Ensemble Method on Deep Neural Network (딥뉴럴네트워크에서의 적대적 샘플에 관한 앙상블 방어 연구)

  • Kwon, Hyun;Yoon, Joonhyeok;Kim, Junseob;Park, Sangjun;Kim, Yongchul
    • Convergence Security Journal
    • /
    • v.21 no.2
    • /
    • pp.57-66
    • /
    • 2021
  • Deep neural networks (DNNs) provide excellent performance for image, speech, and pattern recognition. However, DNNs sometimes misrecognize certain adversarial examples. An adversarial example is a sample that adds optimized noise to the original data, which makes the DNN erroneously misclassified, although there is nothing wrong with the human eye. Therefore studies on defense against adversarial example attacks are required. In this paper, we have experimentally analyzed the success rate of detection for adversarial examples by adjusting various parameters. The performance of the ensemble defense method was analyzed using fast gradient sign method, DeepFool method, Carlini & Wanger method, which are adversarial example attack methods. Moreover, we used MNIST as experimental data and Tensorflow as a machine learning library. As an experimental method, we carried out performance analysis based on three adversarial example attack methods, threshold, number of models, and random noise. As a result, when there were 7 models and a threshold of 1, the detection rate for adversarial example is 98.3%, and the accuracy of 99.2% of the original sample is maintained.

Factor Structure, Validity and Reliability of The Teacher Satisfaction Scale (TSS) In Distance-Learning During Covid-19 Crisis: Invariance Across Some Teachers' Characteristics

  • Almaleki, Deyab A.;Bushnaq, Afrah A.;Altayyari, Basmah A.;Alshumrani, Amenah N.;Aloufi, Ebtesam H.;Alharshan, Najah A.;Almarwani, Ashwaq D.;Al-yami, Abeer A.;Alotaibi, Abeer A.;Alhazmi, Nada A.;Al-Boqami, Haya R.;ALhasani, Tahani N.
    • International Journal of Computer Science & Network Security
    • /
    • v.21 no.7
    • /
    • pp.17-34
    • /
    • 2021
  • This study aimed to examine the Factor Structure of the teacher satisfaction scale (TSS) with distance education during the Covid-19 pandemic, as well as affirming the (Factorial Invariance) according to gender variable. It also aimed at identifying the degree of satisfaction according to some demographic variables of the sample. The study population consisted of all teachers in public education and faculty members in higher education in the Kingdom of Saudi Arabia. The (TSS) was applied to a random sample representing the study population consisting of (2399) respondents. The results of the study showed that the scale consists of five main factors, with a reliability value of (0.94). The scale also showed a high degree of construct validity through fit indices of the confirmatory factor analysis. The results have shown a gradual consistency of the measure's invariance that reaches the third level (Scalar-invariance) of the Measurement Invariance across the gender variable. The results also showed that the average response of the study sample on the scale reached (3.74) with a degree of satisfaction, as there are no statistically significant differences between the averages of the study sample responses with respect to the gender variable. While there were statistically significant differences in the averages with respect to the variable of the educational level in favor of the middle school and statistically significant differences in the averages attributed to the years of experience variable in favor of those whose experience is less than (5) years.

Synthetic Training Data Generation for Fault Detection Based on Deep Learning (딥러닝 기반 탄성파 단층 해석을 위한 합성 학습 자료 생성)

  • Choi, Woochang;Pyun, Sukjoon
    • Geophysics and Geophysical Exploration
    • /
    • v.24 no.3
    • /
    • pp.89-97
    • /
    • 2021
  • Fault detection in seismic data is well suited to the application of machine learning algorithms. Accordingly, various machine learning techniques are being developed. In recent studies, machine learning models, which utilize synthetic data, are the particular focus when training with deep learning. The use of synthetic training data has many advantages; Securing massive data for training becomes easy and generating exact fault labels is possible with the help of synthetic training data. To interpret real data with the model trained by synthetic data, the synthetic data used for training should be geologically realistic. In this study, we introduce a method to generate realistic synthetic seismic data. Initially, reflectivity models are generated to include realistic fault structures, and then, a one-way wave equation is applied to efficiently generate seismic stack sections. Next, a migration algorithm is used to remove diffraction artifacts and random noise is added to mimic actual field data. A convolutional neural network model based on the U-Net structure is used to verify the generated synthetic data set. From the results of the experiment, we confirm that realistic synthetic data effectively creates a deep learning model that can be applied to field data.