• Title/Summary/Keyword: random local search

Search Result 58, Processing Time 0.026 seconds

Optimum Allocation of Pipe Support Using Combined Optimization Algorithm by Genetic Algorithm and Random Tabu Search Method (유전알고리즘과 Random Tabu 탐색법을 조합한 최적화 알고리즘에 의한 배관지지대의 최적배치)

  • 양보석;최병근;전상범;김동조
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.8 no.3
    • /
    • pp.71-79
    • /
    • 1998
  • This paper introduces a new optimization algorithm which is combined with genetic algorithm and random tabu search method. Genetic algorithm is a random search algorithm which can find the global optimum without converging local optimum. And tabu search method is a very fast search method in convergent speed. The optimizing ability and convergent characteristics of a new combined optimization algorithm is identified by using a test function which have many local optimums and an optimum allocation of pipe support. The caculation results are compared with the existing genetic algorithm.

  • PDF

Derivative Evaluation and Conditional Random Selection for Accelerating Genetic Algorithms

  • Jung, Sung-Hoon
    • International Journal of Fuzzy Logic and Intelligent Systems
    • /
    • v.5 no.1
    • /
    • pp.21-28
    • /
    • 2005
  • This paper proposes a new method for accelerating the search speed of genetic algorithms by taking derivative evaluation and conditional random selection into account in their evolution process. Derivative evaluation makes genetic algorithms focus on the individuals whose fitness is rapidly increased. This accelerates the search speed of genetic algorithms by enhancing exploitation like steepest descent methods but also increases the possibility of a premature convergence that means most individuals after a few generations approach to local optima. On the other hand, derivative evaluation under a premature convergence helps genetic algorithms escape the local optima by enhancing exploration. If GAs fall into a premature convergence, random selection is used in order to help escaping local optimum, but its effects are not large. We experimented our method with one combinatorial problem and five complex function optimization problems. Experimental results showed that our method was superior to the simple genetic algorithm especially when the search space is large.

Likelihood search method with variable division search

  • Koga, Masaru;Hirasawa, Kotaro;Murata, Junichi;Ohbayashi, Masanao
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1995.10a
    • /
    • pp.14-17
    • /
    • 1995
  • Various methods and techniques have been proposed for solving optimization problems; the methods have been applied to various practical problems. However the methods have demerits. The demerits which should be covered are, for example, falling into local minima, or, a slow convergence speed to optimal points. In this paper, Likelihood Search Method (L.S.M.) is proposed for searching for a global optimum systematically and effectively in a single framework, which is not a combination of different methods. The L.S.M. is a sort of a random search method (R.S.M.) and thus can get out of local minima. However exploitation of gradient information makes the L.S.M. superior in convergence speed to the commonly used R.S.M..

  • PDF

A Study on the Convergence of the Evolution Strategies based on Learning (학습에의한 진화전략의 수렴성에 관한연구)

  • 심귀보
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.9 no.6
    • /
    • pp.650-656
    • /
    • 1999
  • In this paper, we study on the convergence of the evolution strategies by introducing the Lamarckian evolution and the Baldwin effect, and propose a random local searching and a reinforcement local searching methods. In the random local searching method some neighbors generated randomly from each individual are med without any other information, but in the reinforcement local searching method the previous results of the local search are reflected on the current local search. From the viewpoint of the purpose of the local search it is suitable that we try all the neighbors of the best individual and then search the neighbors of the best one of them repeatedly. Since the reinforcement local searching method based on the Lamarckian evolution and Baldwin effect does not search neighbors randomly, but searches the neighbors in the direction of the better fitness, it has advantages of fast convergence and an improvement on the global searching capability. In other words the performance of the evolution strategies is improved by introducing the learning, reinforcement local search, into the evolution. We study on the learning effect on evolution strategies by applying the proposed method to various function optimization problems.

  • PDF

Greedy-based Neighbor Generation Methods of Local Search for the Traveling Salesman Problem

  • Hwang, Junha;Kim, Yongho
    • Journal of the Korea Society of Computer and Information
    • /
    • v.27 no.9
    • /
    • pp.69-76
    • /
    • 2022
  • The traveling salesman problem(TSP) is one of the most famous combinatorial optimization problem. So far, many metaheuristic search algorithms have been proposed to solve the problem, and one of them is local search. One of the very important factors in local search is neighbor generation method, and random-based neighbor generation methods such as inversion have been mainly used. This paper proposes 4 new greedy-based neighbor generation methods. Three of them are based on greedy insertion heuristic which insert selected cities one by one into the current best position. The other one is based on greedy rotation. The proposed methods are applied to first-choice hill-climbing search and simulated annealing which are representative local search algorithms. Through the experiment, we confirmed that the proposed greedy-based methods outperform the existing random-based methods. In addition, we confirmed that some greedy-based methods are superior to the existing local search methods.

Cost Relaxation Method to Escape from a Local Optimum of the Traveling Salesman Problem (외판원문제에서 국지해를 탈출하기 위한 비용완화법)

  • Kwon, Sang-Ho;Kim, Sung-Min;Kang, Maing-Kyu
    • Journal of Korean Institute of Industrial Engineers
    • /
    • v.30 no.2
    • /
    • pp.120-129
    • /
    • 2004
  • This paper provides a simple but effective method, cost relaxation to escape from a local optimum of the traveling salesman problem. We would find a better solution if we repeat a local search heuristic at a different initial solution. To find a different initial solution, we use the cost relaxation method relaxing the cost of arcs. We used the Lin-Kernighan algorithm as a local search heuristic. In experimental result, we tested large instances, 30 random instances and 34 real world instances. In real-world instances, we found average 0.17% better above the optimum solution than the Concorde known as the chained Lin-Kernighan. In clustered random instances, we found average 0.9% better above the optimum solution than the Concorde.

A Combined Greedy Neighbor Generation Method of Local Search for the Traveling Salesman Problem

  • Yongho Kim;Junha Hwang
    • Journal of the Korea Society of Computer and Information
    • /
    • v.29 no.4
    • /
    • pp.1-8
    • /
    • 2024
  • The traveling salesman problem(TSP) is one of the well known combinatorial optimization problems. Local search has been used as a method to solve TSP. Greedy Random Insertion(GRI) is known as an effective neighbor generation method for local search. GRI selects some cities from the current solution randomly and inserts them one by one into the best position of the current partial solution considering only one city at a time. We first propose another greedy neighbor generation method which is named Full Greedy Insertion(FGI). FGI determines insertion location one by one like GRI, but considers all remaining cities at once. And then we propose a method to combine GRI with FGI, in which GRI or FGI is randomly selected and executed at each iteration in simulated annealing. According to the experimental results, FGI alone does not necessarily perform very well. However, we confirmed that the combined method outperforms the existing local search methods including GRI.

Optimum Design of Local Structure in Ship Based on Global Search Method (전역탐색법을 이용한 선박 국부구조물의 최적설계)

  • 공영모;최수현;송진대;양보석
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2004.05a
    • /
    • pp.416-420
    • /
    • 2004
  • Recently, the importance of vibration reduction at the local structure such as tank, deck which attached machinery and compass deck, has continuously increased by owner and shipbuilder. Because crews are afflicted with them and severe vibration problems affect on the crack of structure. This study conducted optimum design to get a stiffener size of local structure to reducing the vibration level and dec leasing the weight of structure in ship. Random tabu search method (R-Tabu) has fast converging time and can search variables size domains for nonlinear problems. This paper used Nastran external call type independence optimization method which makes using a solver module from Nastran.

  • PDF

A Two-phase Method for the Vehicle Routing Problems with Time Windows (시간대 제약이 있는 차량경로 결정문제를 위한 2단계 해법의 개발)

  • Hong, Sung-Chul;Park, Yang-Byung
    • IE interfaces
    • /
    • v.17 no.spc
    • /
    • pp.103-110
    • /
    • 2004
  • This paper presents a two-phase method for the vehicle routing problems with time windows(VRPTW). In a supply chain management(SCM) environment, timely distribution is very important problem faced by most industries. The VRPTW is associated with SCM for each customer to be constrained the time of service. In the VRPTW, the objective is to design the least total travel time routes for a fleet of identical capacitated vehicles to service geographically scattered customers with pre-specified service time windows. The proposed approach is based on ant colony optimization(ACO) and improvement heuristic. In the first phase, an insertion based ACO is introduced for the route construction and its solutions is improved by an iterative random local search in the second phase. Experimental results show that the proposed two-phase method obtains very good solutions with respect to total travel time minimization.

An unwanted facility location problem with negative influence cost and transportation cost (기피비용과 수송비용을 고려한 기피시설 입지문제)

  • Yang, Byoung-Hak
    • Journal of the Korea Safety Management & Science
    • /
    • v.15 no.1
    • /
    • pp.77-85
    • /
    • 2013
  • In the location science, environmental effect becomes a new main consideration for site selection. For the unwanted facility location selection, decision makers should consider the cost of resolving the environmental conflict. We introduced the negative influence cost for the facility which was inversely proportional to distance between the facility and residents. An unwanted facility location problem was suggested to minimize the sum of the negative influence cost and the transportation cost. The objective cost function was analyzed as nonlinear type and was neither convex nor concave. Three GRASP (Greedy Randomized adaptive Search Procedure) methods as like Random_GRASP, Epsilon_GRASP and GRID_GRASP were developed to solve the unwanted facility location problem. The Newton's method for nonlinear optimization problem was used for local search in GRASP. Experimental results showed that quality of solution of the GRID_GRASP was better than those of Random_GRASP and Epsilon_GRASP. The calculation time of Random_GRASP and Epsilon_GRASP were faster than that of Grid_GRASP.