• Title/Summary/Keyword: random inhomogeneous medium

Search Result 4, Processing Time 0.023 seconds

Seismic modeling consider of inhomogeneous gas hydrate layer (불균질 가스하이드레이트 층을 고려한 탄성파 모델링)

  • Kim, Young-Wan;Jang, Seong-Hyung;Yoon, Wang-Joong;Suh, Sang-Yong
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2007.06a
    • /
    • pp.489-492
    • /
    • 2007
  • The P-wave velocity at the formation which contains gas hydrate varies very wide upon gas hydrate existence. These features on seismic shot gather can not be simulated normally by numerical modeling of homogeneous medium so that we need that of random inhomogeneous medium instead. We, in this study generated random inhomogeneous medium using gaussian ACF, exponential ACF and von Karman ACF and that we supposed the random inhomogeneous medium be gas hydrate formation to execute numeric modeling. The modeling result shows the typical effect by scattering caused by random hydrate formation as is observed from seismic shot gather where hydrate exist.

  • PDF

Comparison of synthetic seismograms referred to inhomogeneous medium (불균질 매질에 따른 인공 합성 탄성파 자료 비교)

  • Kim, Young-Wan;Jang, Seung-Hyung;Yoon, Wang-Joong;Suh, Sang-Yong
    • 한국지구물리탐사학회:학술대회논문집
    • /
    • 2007.06a
    • /
    • pp.197-202
    • /
    • 2007
  • Most of seismic reflection prospecting assumes subsurface formation to be homogeneous media. These models are not capable of estimating small scale heterogeneity which is verified by well log data or drilling core. And those synthetic seismograms by homogeneous media are limited to explain various changes at field data. So we developed a inhomogeneous velocity model which can estimate inhomogeneity of background medium to implement numerical modeling from homogeneous medium and inhomogeneous medium on the model. Background medium using three autocorrelation functions in order to generate inhomogeneous velocity media was according to dominant wavelength of background medium and correlation length of random medium. And then we compared shot gathers. The results show that numerical modeling implemented at inhomogeneous medium depicts complex wave propagation of field data.

  • PDF

Seismic Modeling for Inhomogeneous Medium (불균질 매질에서 탄성파 모델링)

  • Kim, Young-Wan;Jang, Seong-Hyung;Yoon, Wang-Jung
    • Economic and Environmental Geology
    • /
    • v.40 no.6
    • /
    • pp.739-749
    • /
    • 2007
  • The seismic velocity at the formation varies widely with physical properties in the layers. These features on seismic shot gathers are not capable of reproducing normally by numerical modeling of homogeneous medium, so that we need that of random inhomogeneous medium instead. In this study, we conducted Gaussian autocorrelation function (ACF), exponential autocorrelation function and von Karman autocorrelation function for getting inhomogeneous velocity model and applied a simple geological model. According to the results, von Karman autocorrelation function showed short wavelength to the inhomogeneous velocity medium. For numerical modeling for a gas hydrate, we determined a geological model based on field data set gathered in the East sea. The numerical modeling results showed that the von Karman autocorrelation function could properly describe scattering phenomena in the gas hydrate velocity model which contains an inhomogeneous layer. Besides, bottom-simulating-reflectors and scattered waves which appear at seismic shot gather of the field data showed properly in the inhomogeneous numerical modeling.

Inference of the Probability Distribution of Phase Difference and the Path Duration of Ground Motion from Markov Envelope (Markov Envelope를 이용한 지진동의 위상차 확률분포와 전파지연시간의 추정)

  • Choi, Hang;Yoon, Byung-Ick
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.26 no.5
    • /
    • pp.191-202
    • /
    • 2022
  • Markov envelope as a theoretical solution of the parabolic wave equation with Markov approximation for the von Kármán type random medium is studied and approximated with the convolution of two probability density functions (pdf) of normal and gamma distributions considering the previous studies on the applications of Radiative Transfer Theory (RTT) and the analysis results of earthquake records. Through the approximation with gamma pdf, the constant shape parameter of 2 was determined regardless of the source distance ro. This finding means that the scattering process has the property of an inhomogeneous single-scattering Poisson process, unlike the previous studies, which resulted in a homogeneous multiple-scattering Poisson process. Approximated Markov envelope can be treated as the normalized mean square (MS) envelope for ground acceleration because of the flat source Fourier spectrum. Based on such characteristics, the path duration is estimated from the approximated MS envelope and compared to the empirical formula derived by Boore and Thompson. The results clearly show that the path duration increases proportionately to ro1/2-ro2, and the peak value of the RMS envelope is attenuated by exp (-0.0033ro), excluding the geometrical attenuation. The attenuation slope for ro≤100 km is quite similar to that of effective attenuation for shallow crustal earthquakes, and it may be difficult to distinguish the contribution of intrinsic attenuation from effective attenuation. Slowly varying dispersive delay, also called the medium effect, represented by regular pdf, governs the path duration for the source distance shorter than 100 km. Moreover, the diffraction term, also called the distance effect because of scattering, fully controls the path duration beyond the source distance of 300 km and has a steep gradient compared to the medium effect. Source distance 100-300 km is a transition range of the path duration governing effect from random medium to distance. This means that the scattering may not be the prime cause of peak attenuation and envelope broadening for the source distance of less than 200 km. Furthermore, it is also shown that normal distribution is appropriate for the probability distribution of phase difference, as asserted in the previous studies.