• Title/Summary/Keyword: random crack

Search Result 133, Processing Time 0.035 seconds

Basic Characteristics of Micro-Fatigue-Cracks on the Unnotched Smooth Specimens (平활材表面 의 微小피勞균열에 관한 基礎的 特性)

  • 서창민;북천영부;결성양치
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.7 no.1
    • /
    • pp.28-35
    • /
    • 1983
  • Quantitative analysis have been carried out on the micro-cracks on the surface and into the depth of unnotched smooth mild steel specimen under cyclic stains by rotating bending fatigue tests. Some of the results are; (1) Cracks initiate at the early stage of fatigue life N$_{I}$/ N$_{f}$=10 to 20%, and propagate during the rest of fatigue life. (2) Coalescence of highly crowded small fatigue cracks of random distribution seems to induce the final fracture at higher stress level. (3) The curves of crack initiation and the equal crack length on the graph of stress versus number of cycles are parallel to the S-N curve. (3) The curves of crack initiation and the equal crack length on the graph of stress versus number of cycles are parallel to the S-N curve. (4) The distributions of micro-surface crack length and depth show the composite Weibull distributions which are approximated to two straight lines separated by the value of transient region between stage I and stage II crack.k.k.

A Study on the Analysis of Fatigue-fractured Surface of Aluminium for Aircraft (항공기용 Al의 피로파면 분석에 관한 연구)

  • Joo, Won-Kyung;Kwun, Yong-Gu;Bae, Sung-In;Song, Jung-Il
    • Proceedings of the KSME Conference
    • /
    • 2007.05a
    • /
    • pp.274-278
    • /
    • 2007
  • The purpose of this study is to analyze the important loads related with crack-growth in aircraft. Al Alloys mainly used in aircraft are Al2024 and Al7075 in Duralumin. In random fatigue loading, it has been understood crack-growth characteristic using fractured surface photograph by SEM. In order to obtained CTOD, we measured a crack size in wing frame part. As a result of fatigue experiment that accumulating plenty of fatigue loadings, we find more cracks than that produces in the same fatigue loading. The important loads relating to crack-growth was found in the largest strain cycle. Applying strain block in fatigue experiment, it is actually loading in connection of aircraft. In conclusion, These results can be used for preventing an accident owing fatigue-fracture in aircraft.

  • PDF

Reliability-Based Crack Damage Assessment of Reinforced Concrete Bridges (신뢰성에 기초한 콘크리트교량의 균열손상평가)

  • 조효남;최영민;임종권;옥승범
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 1995.10a
    • /
    • pp.334-338
    • /
    • 1995
  • In recent years, the prediction of the deterioration rate of concrete structures has become major research interest. However, there are still many uncertain factors in the deterioration process and the relation between deterioration and durability of structures. This is mainly due to various uncertainties involved in the construction process and the environmental conditions which affect the rate of deterioration of concrete structures. In this study a limit state model in terms of random crack width due to applied dead and live loads is proposed for the assessment of crack damage of reinforced concrete structures. The AFOSM reliability method is used for the reliability evaluation of the crack durability of concrete bridges. The proposed model for crack durability of concrete bridges is applied to the Seoul interior circuit elevated expressway. The sensitivity analyses are performed for the proposed model.

  • PDF

Estimation of Probability Distribution Fit for Fatigue Crack Propagation Life of AZ31 Magnesium Alloy (AZ31 마그네슘합금의 피로균열진전수명에 적합한 확률분포 평가)

  • Choi, Seon-Soon
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.33 no.8
    • /
    • pp.707-719
    • /
    • 2009
  • The variables relating to the fatigue behavior have uncertainty and are random. The fatigue crack propagation is, thus, stochastic in nature. In this study, fatigue experiments are performed on the specimen of the magnesium alloy AZ31. The data of the fatigue life are scattered even in the same experimental condition. It is necessary to determine the probability distribution of the fatigue crack propagation life for the reliability analysis as well as the design and maintenance of structural components. Therefore the statistics and the probability distribution for the fatigue crack propagation life are investigated and the best fit probability distribution of that is proposed in this paper.

Fatigue Life Prediction of $SIC_w$/Al Composites by Using the Monte-Carlo Simulation (몬테카르로 시뮬레이션에 의한 $SIC_w$/Al 복합재료의 피로수명에측)

  • Ahn, Jeong-Ju;Kwon, Jae-Do;Kim, Sang-Tae
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.20 no.5
    • /
    • pp.1552-1561
    • /
    • 1996
  • It requires uch time and cost to obtain the fatigue crack growth life and fatigue crack growth path morphlogy from the fatigue crack growth tests. In this study, the Monte-Carlo simulation program was developed to predict the fatigue crack growth lofe and fatigue crack growth path morphology of metal matrix composites. Fatigue crack growth lives of 5%, 10%, 15%, 20%, 25% and 30% $SiC_w$/Al composites were predicted by usign the Monte-Carlo Simulation. And the fatigue crack growth lives of 25% $SiC_w$/Al and Almatrix from Monte-carlo simulation were compared with fatigue life from experiments in order to verify the accuracy of Monte-Carlo Simulation program.

Numerical simulation on structural behavior of UHPFRC beams with steel and GFRP bars

  • Yoo, Doo-Yeol;Banthia, Nemkumar
    • Computers and Concrete
    • /
    • v.16 no.5
    • /
    • pp.759-774
    • /
    • 2015
  • This study simulates the flexural behavior of ultra-high-performance fiber-reinforced concrete (UHPFRC) beams reinforced with steel and glass fiber-reinforced polymer (GFRP) rebars. For this, micromechanics-based modeling was first carried out on the basis of single fiber pullout models considering inclination angle. Two different tension-softening curves (TSCs) with the assumptions of 2-dimensional (2-D) and 3-dimensional (3-D) random fiber orientations were obtained from the micromechanics-based modeling, and linear elastic compressive and tensile models before the occurrence of cracks were obtained from the mechanical tests and rule of mixture. Finite element analysis incorporating smeared crack model was used due to the multiple cracking behaviors of structural UHPFRC beams, and the characteristic length of two times the element width (or two times the average crack spacing at the peak load) was suggested as a result of parametric study. Analytical results showed that the assumption of 2-D random fiber orientation is appropriate to a non-reinforced UHPFRC beam, whereas the assumption of 3-D random fiber orientation is suitable for UHPFRC beams reinforced with steel and GFRP rebars due to disorder of fiber alignment from the internal reinforcements. The micromechanics-based finite element analysis also well predicted the serviceability deflections of UHPFRC beams with GFRP rebars and hybrid reinforcements.

A Study on Fatigue Crack Propagation Behavior in Random Short-Fiber SMC Composites (비규칙 단섬유강화 SMC 복합재료의 피로균열 전파거동에 관한 연구)

  • Kim, Jae-Dong;Koh, Sung-Wi
    • Journal of the Korean Society of Fisheries and Ocean Technology
    • /
    • v.26 no.2
    • /
    • pp.204-212
    • /
    • 1990
  • The SMC composite, now being considered in certain structural applications, is anticipated to experience repeated loading during service. Thus, understanding of the fatigue behavior is essential in proper use of the composite material. In this paper, using the SMC composite composed of E-glass chopped strand and unsaturated polyester resin three point bending fatigue tests are carried out to investigate the fatigue crack propagating behavior under various cyclic stresses and fatigue damage of various microcrack forms. The following results are obtained from this study; 1) Most of the total fatigue life of the SMC composite is consumed at the initial extension or the growth of the macroscopic crack. 2) A Paris' type power-law relationship between the crack propagation rate and stress intensity factor range is obtained, and the value of material constant m is much higher (m=9~11)than that of other metals. 3) In case of high cyclic stress the fatigue damage show high microcrack density and short crack length, but in case of low cyclic stress does it vice versa. 4) Fatigue damage is characterized by microcrack density, crack length and distribution of crack orientation.

  • PDF

Comparison Analysis of Machine Learning for Concrete Crack Depths Prediction Using Thermal Image and Environmental Parameters (열화상 이미지와 환경변수를 이용한 콘크리트 균열 깊이 예측 머신 러닝 분석)

  • Kim, Jihyung;Jang, Arum;Park, Min Jae;Ju, Young K.
    • Journal of Korean Association for Spatial Structures
    • /
    • v.21 no.2
    • /
    • pp.99-110
    • /
    • 2021
  • This study presents the estimation of crack depth by analyzing temperatures extracted from thermal images and environmental parameters such as air temperature, air humidity, illumination. The statistics of all acquired features and the correlation coefficient among thermal images and environmental parameters are presented. The concrete crack depths were predicted by four different machine learning models: Multi-Layer Perceptron (MLP), Random Forest (RF), Gradient Boosting (GB), and AdaBoost (AB). The machine learning algorithms are validated by the coefficient of determination, accuracy, and Mean Absolute Percentage Error (MAPE). The AB model had a great performance among the four models due to the non-linearity of features and weak learner aggregation with weights on misclassified data. The maximum depth 11 of the base estimator in the AB model is efficient with high performance with 97.6% of accuracy and 0.07% of MAPE. Feature importances, permutation importance, and partial dependence are analyzed in the AB model. The results show that the marginal effect of air humidity, crack depth, and crack temperature in order is higher than that of the others.

Development of an algorithm for crack pattern recognition (균열 패턴인식 알고리즘 개발)

  • Lee Bang Yeon;Kim Yun-Yong;Kim Jin-Keun;Park Seok-Kyun
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2004.05a
    • /
    • pp.716-719
    • /
    • 2004
  • This study proposes an algorithm for recognition of crack patterns, which includes horizontal, vertical, diagonal$(-45^{\circ})$, diagonal$(+45^{\circ})$, and random cracks, based on image processing technique and artificial neural network. A MATLAB code was developed for the proposed algorithm, and then numerical tests were performed on thirty-eight crack images to examine validity of the algorithm. Within the limited tests in the present study, the proposed algorithm was revealed as accurately recognizing the crack patterns when compared to those classified by a human expert.

  • PDF

Probabilistic Remaining Life Assessment Program for Creep Crack Growth (크리프 균열성장 모델에 대한 확률론적 수명예측 프로그램)

  • Kim, Kun-Young;Shoji, Tetsuo;Kang, Myung-Soo
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.16 no.6
    • /
    • pp.100-107
    • /
    • 1999
  • This paper describes a probabilistic remaining life assessment program for the creep crack growth. The probabilistic life assessment program is developed to increase the reliability of life assessment. The probabilistic life assessment involves some uncertainties, such as, initial crack size, material properties, and loading condition, and a triangle distribution function is used for random variable generation. The resulting information provides the engineer with an assessment of the probability of structural failure as a function of operating time given the uncertainties in the input data. This study forms basis of the probabilistic life assessment technique and will be extended to other damage mechanisms.

  • PDF