• Title/Summary/Keyword: random algorithm

Search Result 1,804, Processing Time 0.026 seconds

Random Access Method of the Wibro System

  • Lee, Kang-Won
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.36 no.1A
    • /
    • pp.49-57
    • /
    • 2011
  • Random access method for Wibro system is proposed using the Bayesian Technique, which can estimate the number of bandwidth request messages in a frame only based on the number of successful slots. The performance measures such as the maximum average throughput, the mean delay time and the collision ratio are investigated to evaluate the performance of the proposed method. The proposed method shows better performance than the binary exponential backoff algorithm used currently.

An Algorithm for Calculation of Probability Distributions of Output Variables in Process Simulation (공정 시뮬레이션 출력 변수의 확률분포 계산 알고리즘)

  • 최수형
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.8 no.10
    • /
    • pp.847-850
    • /
    • 2002
  • Stochastic process analysis is often based on Monte Carlo simulations. As a more rigorous alternative, a deterministic algorithm based on numerical integration is proposed in this paper. which calculates the probability distributions of dependent random variables using the results of simulation with grid points of independent random variables. For performance evaluation, the proposed algorithm is applied to an example problem which can be analytically solved. and the result is compared with that of Monte Carlo simulation. The proposed algorithm is suitable for general process simulation problems with a few independent random variables, and expected to be applicable to areas such as safety analysis and quality control.

Image Dehazing using Transmission Map Based on Hidden Markov Random Field Model (은닉 마코프 랜덤 모델 기반의 전달 맵을 이용한 안개 제거)

  • Lee, Min-Hyuk;Kwon, Oh-Seol
    • Journal of the Institute of Electronics and Information Engineers
    • /
    • v.51 no.1
    • /
    • pp.145-151
    • /
    • 2014
  • This paper proposes an image haze removal algorithm for a single image. The conventional Dark Channel Prior(DCP) algorithm estimates a transmission map using the dark information in an image, and the haze regions are then detected using a matting algorithm. However, since the DCP algorithm uses block-based processing, block artifacts are invariably formed in the transmission map. To solve this problem, the proposed algorithm generates a modified transmission map using a Hidden Markov Random Field(HMRF) and Expectation-Maximization(EM) algorithm. Experimental results confirm that the proposed algorithm is superior to conventional algorithms in image haze removal.

A Random Deflected Subgradient Algorithm for Energy-Efficient Real-time Multicast in Wireless Networks

  • Tan, Guoping;Liu, Jianjun;Li, Yueheng
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.10 no.10
    • /
    • pp.4864-4882
    • /
    • 2016
  • In this work, we consider the optimization problem of minimizing energy consumption for real-time multicast over wireless multi-hop networks. Previously, a distributed primal-dual subgradient algorithm was used for finding a solution to the optimization problem. However, the traditional subgradient algorithms have drawbacks in terms of i) sensitivity to iteration parameters; ii) need for saving previous iteration results for computing the optimization results at the current iteration. To overcome these drawbacks, using a joint network coding and scheduling optimization framework, we propose a novel distributed primal-dual Random Deflected Subgradient (RDS) algorithm for solving the optimization problem. Furthermore, we derive the corresponding recursive formulas for the proposed RDS algorithm, which are useful for practical applications. In comparison with the traditional subgradient algorithms, the illustrated performance results show that the proposed RDS algorithm can achieve an improved optimal solution. Moreover, the proposed algorithm is stable and robust against the choice of parameter values used in the algorithm.

Fingerprint Image for the Randomness Algorithm

  • Park, Jong-Min
    • Journal of information and communication convergence engineering
    • /
    • v.8 no.5
    • /
    • pp.539-543
    • /
    • 2010
  • We present a random bit generator that uses fingerprint image for the source of random, and random bit generator using fingerprint image for the randomness has not been presented as yet. Fingerprint image is affected by the operational environments including sensing act, nonuniform contact and inconsistent contact, and these operational environments make FPI to be used for the source of random possible. Our generator produces, on the average, 9,334 bits a fingerprint image in 0.03 second. We have used the NIST SDB14 test suite consisting of sixteen statistical tests for testing the randomness of the bit sequence generated by our generator, and as the result, the bit sequence passes all sixteen statistical tests.

Pattern Optimization of Intentional Blade Mistuning for the Reduction of the Forced Response Using Genetic Algorithm

  • Park, Byeong-Keun
    • Journal of Mechanical Science and Technology
    • /
    • v.17 no.7
    • /
    • pp.966-977
    • /
    • 2003
  • This paper investigates how intentional mistuning of bladed disks reduces their sensitivity to unintentional random mistuning. The class of intentionally mistuned disks considered here is limited, for cost reasons, to arrangements of two types of blades (A and B, say). A two-step procedure is then described to optimize the arrangement of these blades around the disk to reduce the effects of unintentional random mistuning. First, a pure optimization effort is undertaken to obtain the pattern (s) of the A and B blades that yields small/the smallest value of the largest amplitude of response to a given excitation in the absence of unintentional random mistuning using Genetic Algorithm. Then, in the second step, a qualitative/quantitative estimate of the sensitivity for the optimized intentionally mistuned bladed disks with respect to unintentional random mistuning is performed by analyzing their amplification factor, probability density function and passband/stopband structures. Examples of application with simple bladed disk models demonstrate the significant benefits of using this class of intentionally mistuned disks.

Genetic Algorithm based Hybrid Ensemble Model (유전자 알고리즘 기반 통합 앙상블 모형)

  • Min, Sung-Hwan
    • Journal of Information Technology Applications and Management
    • /
    • v.23 no.1
    • /
    • pp.45-59
    • /
    • 2016
  • An ensemble classifier is a method that combines output of multiple classifiers. It has been widely accepted that ensemble classifiers can improve the prediction accuracy. Recently, ensemble techniques have been successfully applied to the bankruptcy prediction. Bagging and random subspace are the most popular ensemble techniques. Bagging and random subspace have proved to be very effective in improving the generalization ability respectively. However, there are few studies which have focused on the integration of bagging and random subspace. In this study, we proposed a new hybrid ensemble model to integrate bagging and random subspace method using genetic algorithm for improving the performance of the model. The proposed model is applied to the bankruptcy prediction for Korean companies and compared with other models in this study. The experimental results showed that the proposed model performs better than the other models such as the single classifier, the original ensemble model and the simple hybrid model.

Multivariate Poisson Distribution Generated via Reduction from Independent Poisson Variates

  • Kim, Dae-Hak;Jeong, Heong-Chul
    • Journal of the Korean Data and Information Science Society
    • /
    • v.17 no.3
    • /
    • pp.953-961
    • /
    • 2006
  • Let's say that we are given a k number of random variables following Poisson distribution that are individually dependent and which forms multivariate Poisson distribution. We particularly dealt with a method of creating random numbers that satisfies the covariance matrix, where the elements of covariance matrix are parameters forming a multivariate Poisson distribution. To create such random numbers, we propose a new algorithm based on the method reducing the number of parameter set and deal with its relationship to the Park et al.(1996) algorithm used in creating multivariate Bernoulli random numbers.

  • PDF

Cleaning Robot Algorithm through Human-Robot Interaction (사람과 로봇의 상호작용을 통한 청소 로봇 알고리즘)

  • Kim, Seung-Yong;Kim, Tae-Hyung
    • Journal of KIISE:Software and Applications
    • /
    • v.35 no.5
    • /
    • pp.297-305
    • /
    • 2008
  • We present a cleaning robot algorithm that can be implemented on low-cost robot architecture while the cleaning performance far exceeds the conventional random style cleaning through human-robot interaction. We clarify the advantages and disadvantages of the two notable cleaning robot styles: the random and the mapping styles, and show the possibility how we can achieve the performance of the complicated mapping style under the random style-like robot architecture using the idea of human-aided cleaning algorithm. Experimental results are presented to show the performance.

Application of Random Forest Algorithm for the Decision Support System of Medical Diagnosis with the Selection of Significant Clinical Test (의료진단 및 중요 검사 항목 결정 지원 시스템을 위한 랜덤 포레스트 알고리즘 적용)

  • Yun, Tae-Gyun;Yi, Gwan-Su
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.57 no.6
    • /
    • pp.1058-1062
    • /
    • 2008
  • In clinical decision support system(CDSS), unlike rule-based expert method, appropriate data-driven machine learning method can easily provide the information of individual feature(clinical test) for disease classification. However, currently developed methods focus on the improvement of the classification accuracy for diagnosis. With the analysis of feature importance in classification, one may infer the novel clinical test sets which highly differentiate the specific diseases or disease states. In this background, we introduce a novel CDSS that integrate a classifier and feature selection module together. Random forest algorithm is applied for the classifier and the feature importance measure. The system selects the significant clinical tests discriminating the diseases by examining the classification error during backward elimination of the features. The superior performance of random forest algorithm in clinical classification was assessed against artificial neural network and decision tree algorithm by using breast cancer, diabetes and heart disease data in UCI Machine Learning Repository. The test with the same data sets shows that the proposed system can successfully select the significant clinical test set for each disease.