• Title/Summary/Keyword: rainwater

Search Result 495, Processing Time 0.027 seconds

A comparative study of design guidelines for the decentralized rainwater management of apartment house (분산식 빗물관리를 위한 공동주택 외부공간 설계지침 연구)

  • Moon, Soo-young;Kim, Hyeon-soo;Lee, Keon-ho;Jang, Dae-hee
    • KIEAE Journal
    • /
    • v.6 no.3
    • /
    • pp.3-10
    • /
    • 2006
  • As environmental problems and water-shortage phenomenon become a global issue, many states look for the effective method to use water resources. So, decentralized rainwater management is recognized as a new water management system that rainwater can be infiltrated and used on-site. But it is little difficult to build a park, lake, and forest for evaporating rainwater in city because the land price of city is very high. In order to build an excellent infiltration system for a dwelling and a park in Korea, KICT has developed Linear infiltration system. This infiltration system is consist of first flush treatment, storage and infiltration, overflow control system. These elements are connected closely and working as a combined system. A storm sewer can be changed by the linear infiltration system. This study is to make design guideline using Linear infiltration system in apartment house. So ATV-DVWK-M13, FLL and present condition of Korean rainwater system were analyzed and the guidelines direction were set up. Through this study, a foundation is prepared to build the decentralized rainwater management of apartment house.

A Study on the Effectiveness of Rainwater Recycling to Replace Groundwater in a Smart Farming Greenhouse (스마트팜 운영시 빗물 재활용을 통한 농촌지역 지하수 사용량 대체 효과 실증 연구)

  • Jung-Hyun Yoo;Eun-jeong Kim;Cheol-Ku Youn;Bong Ho Son;KyuHoi Lee;Young-Soo Han
    • Journal of Soil and Groundwater Environment
    • /
    • v.28 no.5
    • /
    • pp.51-58
    • /
    • 2023
  • In this study, an empirical experiment was conducted to assess the feasibility of replacing groundwater with rainwater in melon cultivation using a smart rainwater harvesting system. The rainwater harvesting efficiency was calculated under three different melon cultivation scenarios. After cultivation, the quality of the fruits grown with rainwater and groundwater was compared by examining the weight, degree of sweetness, and flesh hardness of the products. The results revealed that the water quality of the smart rainwater harvesting device was suitable for melon cultivation to provide better hardness and chloride levels than groundwater. It was also estimated that about 40% of the total water demand for full growth of the melon could be supplied by rainwater. The fruit weight and sweetness were equivalent or slightly better for the melons cultivated with rainwater than those cultivated with groundwater. In particular, the flesh hardness was significantly improved by rainwater cultivation. These results collectively suggest that rainwater can be used as a substitute for groundwater to preserve groundwater resources without compromizing the produced fruit quality.

Hydrological Evaluation of Rainwater Harvesting: 1. Hydrological Analysis (빗물이용의 수문학적 평가: 1. 수문해석)

  • Yoo, Chulsang;Kim, Kyoungjun;Yun, Zuhwan
    • Journal of Korean Society on Water Environment
    • /
    • v.24 no.2
    • /
    • pp.221-229
    • /
    • 2008
  • This study revised a model for hydrologically analyzing rainwater harvesting facilities considering their rainfall-runoff properties and the data available. This model has only a few parameters, which can be estimated with rather poor measurements available. The model has a non-linear module for rainfall loss, and the remaining rainfall excess (effective rainfall) is assumed to be inflow to the storage tank. This model has been applied for the rainwater harvesting facilities in Seoul National University, Korea Institute of Construction Technology, and the Daejon World Cup Stadium. As a result, the runoff coefficients estimated were about 0.9 for the building roof as a rainwater collecting surface and about 0.18 for the playground. This result is coincident with that for designing the rainwater harvesting facilities to show the accuracy of model and the simulation results.

Study on Visualization of Environment Education Contents: Development of Animation using the Rainwater (환경교육 콘텐츠 시각화 연구: 빗물을 소재로 한 애니메이션 개발)

  • Lee, Young-suk
    • Journal of Korea Multimedia Society
    • /
    • v.19 no.5
    • /
    • pp.970-978
    • /
    • 2016
  • This study suggests the visual contents of environment education using the Rainwater, Visual contents is more effective than writings in terms of delivering information. Environment education needs to be performed from the stage of early childhood as environment can be dealt throughout the overall daily life of learners. This study is to utilize animation contents for environment education to shift recognition of user on environment and deliver the information. For this purpose, virtual space, a theme park with motif of rain city operated by Rainwater was established. Then the process of utilizing Rainwater was shown using rides. Imaginary animal, a dragon and endangered animals were visualized as characters. So this paper is to suggest the possibility of visualization of environment education contents and stimulate 'interest' and provide educational information' on utilizing the Rainwater.

The Study about Applied Realities of Infiltrated Facilities for the Rainwater in the Housing Complex - With the Center of Kiheung, Sangal Kum Hwa Village - (공동 주택단지 옥외공간의 빗물침투시설 적용실태에 관한 연구 - 기흥 상갈 금화마을을 중심으로 -)

  • Kim, Do-Kyong;Park, Sung-Jun
    • Journal of the Korean Society of Environmental Restoration Technology
    • /
    • v.6 no.4
    • /
    • pp.33-42
    • /
    • 2003
  • Nowadays, according to the interests in the environmental infinity for the housing complex, there are various studies going on for setting general ideas and plans of them. And in some of the leading places are applied by the infinity of the natural environment. So, by this study, I analyzed the classification and the system of the infiltrated facilities for the rainwater and then suggested the problems about these and the studies for the generalization of the infiltrated facilities for the rainwater based on my real investigation of the center of infiltrated facilities for the rainwater in the Kiheung, Sangal Kum Hwa Village designed and builded by the Korea Housing Corporation for building housing complex with the infinity of the natural environment. I grasped the realities based on subject investigations and designs and found out the infiltrated facilities for the rainwater in the subject. Those are the porous concretes, pebbles and cobbles. The problems in the subject are supervision of these places and a shoddy and fault constructions by the ignorance and lack of recognition for the construction. These will be solved by reconsidering of the infiltrated facilities for the rainwater. The system of the infiltration is that the rainwater of the top of the building flows into the brook in the subject through the field of the subject. There must be going to be leading studies on the effect of these facilities and influence on the environment for the generalization of the infiltrated facilities for the rainwater of natural environment.

Application of the Flowerbed Type Infiltration System for Low Impact Development - Focus on the Application to Eco-Village - (저부하형 개발을 위한 화단형 빗물침투시설 적용방안 - 생태전원마을에서의 적용을 중심으로 -)

  • Han, Young-Hae;Lee, Tae-Goo;Schuetze, T.
    • KIEAE Journal
    • /
    • v.12 no.3
    • /
    • pp.33-40
    • /
    • 2012
  • Since 2000 country region developmental policy has been to integrate not only the improvement of physical living environment but also various subjects on ecology, environment, scenery, local culture, and green tourism. This study has recently established a decentralized Rainwater Management plan in order to provide an hydrology cycle system to the eco-village being planned by Seocheon-gun as a part of the garden village development business promoted by the ministry of agriculture and forestry. Hydraulic conductivity of the subject area is measured at $10^{-7}{\sim}10^{-10}m/sec$, and a flowerbed-type rainwater Infiltration system capable of controlling a non-point pollution source that stems from the development-caused impermeable surface has been applied. In the case of rainwater flowing out from the main entrance way and parking lot within the complex being treated in the flowerbed-type rainwater infiltration system, natural purification effects via soil and plants as well as natural water cycling effects through evaportranspiration and infiltration are expected. The significance of this study, compared to conventional decentralized rainwater management being applied limited to the urban areas, is that it offers appropriate rainwater management planning based on the analysis of the current situation of the subject area. Decentralized Rainwater Management is a valuable measure both economically and ecologically that reduces the burdens on local underground water cultivation as well as rain water pipe lines or purification systems, and sewage pipes.

Structural Stability Evaluation of Eco-Friendly Prefabricated Rainwater Infiltration Type Detention Facility with Red Clay Water-Permeable Block Body (황토투수블록체를 적용한 친환경 조립식 빗물 침투형 저류시설의 구조 안정성 평가)

  • Choi, Hyeonggil;Lee, Taegyu;Kim, Hojin;Choi, Heeyong
    • Journal of the Korea Institute of Building Construction
    • /
    • v.22 no.1
    • /
    • pp.1-10
    • /
    • 2022
  • Recently, due to the frequent occurrence of localized torrential rains and heat waves caused by abnormal climates. For this reason, it is necessary to develop an economical and eco-friendly rainwater detention facility that can secure the groundwater level through rainwater detention as well as flood prevention against concentrated rainfall by simultaneously implementing rainwater permeation and storage. In this study, the structural safety of an eco-friendly rainwater infiltration type detention facility made using eco-friendly inorganic binders including red clay was examined. Static analysis considering the constant load and additional vertical load and dynamic analysis considering the seismic spectrum were performed. As a result, it was found that the eco-friendly prefabricated rainwater infiltration type detention facility developed in this study has a maximum stress of about 68.1% to 75.4% and a maximum displacement of about 0.9% to 9.6% under the same load and seismic conditions compared to the existing PE block rainwater detention facility. It was confirmed that the eco-friendly prefabricated rainwater infiltration type detention facility secured excellent structural stability.

Developing a composite vertical flow constructed wetlands for rainwater treatment

  • Ahmed, Sanjrani Manzoor;Zhou, Boxun;Zhao, Heng;Zheng, You Ping;Wang, Yue;Xia, Shibin
    • Membrane and Water Treatment
    • /
    • v.11 no.2
    • /
    • pp.87-95
    • /
    • 2020
  • The worldwide shortage of water resources is a major environmental issue. Using pure water for drinking and domestic purposes is a bigger issue than other environmental issues. Industrialization and Urbanization have even polluted rainwater. In China, when it rains, rainwater is stored on the roof or other sources of storage for daily use resulting in pollution. Several studies have been conducted to treat rainwater. The objective of this study is to evaluate the efficiency of constructed wetlands by using ACF as a medium. So, this study aims to treat rainwater in Wuhan city through a Composite Vertical Flow Constructed Wetlands. First, rainwater was stored in the tank while it flows out of the roof, further it is processed in constructed wetlands. The constructed wetlands is consisted with plants Calamus and Chives, adding ACF (prepared from luffa) has achieved great results in this study. Results show that the pollutants have been removed to a considerable level, there were significant differences in removal rates under different HRT at 6h, 9h and 12h respectively. Therefore, Composite Vertical Flow Constructed Wetlands is recommended for total nitrogen and Ammonia nitrogen and total phosphorus.

Recycling of a discarded septic tank as a rainwater management system and it's economic feasibility analysis (폐정화조를 재활용한 다목적 빗물관리시스템 구상 및 경제성 분석)

  • Kim, Mikyeong;Kwak, Donggeun;Han, Mooyoung;Yang, Jichung
    • Journal of Korean Society of Water and Wastewater
    • /
    • v.23 no.5
    • /
    • pp.647-654
    • /
    • 2009
  • Since the end of the 1990s, sewer pipe improvement works have been going on: most septic tanks have been thrown away and discarded. These discarded septic tanks amounts up to 370,000 based on the project plan 2005-2008: it is a serious squander of nation's resources, a contaminating means that buries toxins under soil, and a cause of a expensive waste. Research on recycling of discarded septic tank as a new resource is in urgent need. This research suggests plans to recycle discarded septic tank as a rainwater management facility, solutions to water cycle recovery in the limelight, and economic analysis of the plan. In the case of a recycling discarded septic tank as a rainwater management facility will socially benefit to support economical adequacy, discard cost saving of septic tank and water supply and sewage cost reduction will come out. Consequently a rainwater management facility converted from a discarded septic tank leads to decentralization of the rainwater management system, which anticipates a positive effect on recovery of urban water cycle.

characteristic of Ions in Rainwater at Air Polluted and Non-POLLUTED aREA (대기오염지역과 비오염지역 강우의 이온특성)

  • ;Yositake, F.;Junichi, T.
    • The Korean Journal of Ecology
    • /
    • v.21 no.3
    • /
    • pp.195-201
    • /
    • 1998
  • This study was carried out to investigate characteristic of ions in rainwater by throughfall, stemflow and rainfall at air polluted area(Kure city industrial city) and non-air polluted area (Higashihiroshima city non industrial city). pH of rainwater in air polluted area were all low as compared with those in non-air polluted area. EC of rainwater in ir polluted area were high in throughfall and stemflow, but there was no difference between both areas in rainfall. The concentration of major ions in rainwater were generally high at air polluted area, especially of $Mg^{2+}$, $Ca^{2+}$, $Cl^{-}$ and $SO_4^{2-}$ in stemflow. But there was little difference in $NH_4^{+}$, and there was also cases had a high concentration in non-air polluted area. By comparison with forest type, in stemflow concentration of ions in coniferous forest were higher than those in broad-leaved, but in throughfall they were higher in mixed forest rather than coniferous forest. There was no correlation between the amount of rainwater and pH, and also EC. $NO_4^{-}$ and $SO_{4}^{2-}$ had high correlations between major ions besides $Na^{+}$ and $NH_{4}^{+}$ in air poluted area.

  • PDF