• Title/Summary/Keyword: rainfall modeling

Search Result 330, Processing Time 0.024 seconds

Real Scale Experiment for Suspended Solid Transport Analysis and Modeling of Particle Dispersion Model (부유 물질 거동 분석을 위한 실규모 실험 및 입자 분산 모형 적용)

  • Shin, Jaehyun;Park, Inhwan;Seong, Hoje;Rhee, Dong Sop
    • Journal of Convergence for Information Technology
    • /
    • v.10 no.12
    • /
    • pp.236-244
    • /
    • 2020
  • In this research a suspended solid transport experiment was conducted in the river experiment center to find the characteristics and dispersion of the material. Modeling by the particle dispersion model was also executed to reproduce the suspended solid transport. The suspended solid was consisted of a mixture of silica and water using a mixing equipment, which was then introduced into a real-scale flume and measured with the laser-diffraction based particle size analyzer(LISST) to find the concentration of the material. The comparison between the measured suspended solid concentration using drone images and particle size analyzers, with the model showed a good match overall, which proved the applicability of the model. Along with finding the model applicability, the research showed the potential for suspended solid estimation in high flow situations with high rainfall.

Assessing the Unit Load Reduction Equation of Drainage Outlet Raising Management in Paddy Fields (논 물꼬관리 기법 적용에 따른 원단위 삭감부하량 산정식 평가)

  • Kim, Dong-Hyeon;Oh, Heung-Keun;Jang, Taeil;Ham, Jong-Hwa
    • Journal of The Korean Society of Agricultural Engineers
    • /
    • v.65 no.2
    • /
    • pp.35-45
    • /
    • 2023
  • The DOR (Drainage outlet raising) in the paddy field has been suggested as one of the most important best management practices for the TMDL (Total maximum daily load) management in the technical guidelines by the NIER (National institute of environmental research). However, this method is underestimated and is not well adopted by local governments for the TMDL. The purpose of this study is to evaluate the unit load reduction equation according to the application of DOR in order to expand this equation. The original equation in the guideline was derived using the HSPF (Hydrological Simulation Program-Fortran) model for 1 year in Changnyeong. We analyzed the reduction effect of the original equation application by collecting additional long-term monitoring data from the Buan, Icheon, Iksan, and Jeonju. When comparing the reduction loads between the original equation and monitoring results, the evaluation results of the original equation were 11% of the monitoring analysis results, which was underestimated. This means that the original equation needs to be improved. For assessing the equation, the HSPF Paddy-RCH model was established according to the NI ER guideline and evaluated for applicability. The performance results of the model showed a reasonable range by the statistical criteria. Modified equations 1 and 2 were proposed based on the monitoring and modeling results. Modified equation 1 was the method of modifying the original equation's main factors, and modified equation 2 was the method of applying the non-point pollution reduction efficiency according to the rainfall class using the long-term modeling results. At the level of 58.6~64.6% of monitoring data, the difference between them could be further reduced compared to the original equation. The suggested approach will be more reasonable and practicable for decision-makers and will contribute to the TMDL management plans.

Effect of Pore Water Pressure on Slope Stability by Using Coupled Finite Element Analysis (연계해석(Coupled Analysis)에 의한 간극수압이 사면안정에 미치는 영향)

  • Shin, Jong-Ho;Kim, Hak-Moon;Jang, Kyung-Jun
    • Journal of the Korean Geotechnical Society
    • /
    • v.25 no.2
    • /
    • pp.25-35
    • /
    • 2009
  • Slope failures are one of the significant disasters which causes lots of human casualties and huge financial losses every year. Previous researches on the slope failure have indicated that most accidents are closely related to the pore water pressure in the slope due to rainfall during the rainy seasons or stormy weather conditions. It would be therefore appropriate to consider the effect of pore water pressure in the design of slopes. As the existing slopes are generally reinforced by plants and other slope protecting measures, their boundary conditions are highly complicated. In this paper an attempt to develop a new modeling and analysis technique of slopes is proposed by including pore water pressure and adopting the coupled finite element method. Non-reinforced and reinforced slope models are considered. Representative analysis showed that the numerical modeling considering pore water pressure is appropriate in slope stability analysis. Flow behavior in the slopes is identified for various hydraulic boundary conditions. It is also shown that the effect of pore water pressure on slope stability is significant.

Landslide risk zoning using support vector machine algorithm

  • Vahed Ghiasi;Nur Irfah Mohd Pauzi;Shahab Karimi;Mahyar Yousefi
    • Geomechanics and Engineering
    • /
    • v.34 no.3
    • /
    • pp.267-284
    • /
    • 2023
  • Landslides are one of the most dangerous phenomena and natural disasters. Landslides cause many human and financial losses in most parts of the world, especially in mountainous areas. Due to the climatic conditions and topography, people in the northern and western regions of Iran live with the risk of landslides. One of the measures that can effectively reduce the possible risks of landslides and their crisis management is to identify potential areas prone to landslides through multi-criteria modeling approach. This research aims to model landslide potential area in the Oshvand watershed using a support vector machine algorithm. For this purpose, evidence maps of seven effective factors in the occurrence of landslides namely slope, slope direction, height, distance from the fault, the density of waterways, rainfall, and geology, were prepared. The maps were generated and weighted using the continuous fuzzification method and logistic functions, resulting values in zero and one range as weights. The weighted maps were then combined using the support vector machine algorithm. For the training and testing of the machine, 81 slippery ground points and 81 non-sliding points were used. Modeling procedure was done using four linear, polynomial, Gaussian, and sigmoid kernels. The efficiency of each model was compared using the area under the receiver operating characteristic curve; the root means square error, and the correlation coefficient . Finally, the landslide potential model that was obtained using Gaussian's kernel was selected as the best one for susceptibility of landslides in the Oshvand watershed.

Quantitative Estimation of Pollution Loading from Hwaseong Watershed using BASINS/HSPF (BASINS/HSPF를 이용한 화성유역 오염부하량의 정량적 평가)

  • Jung, Kwang-Wook;Yoon, Chun-G.;Jang, Jae-Ho;Kim, Hyung-Chul
    • Journal of The Korean Society of Agricultural Engineers
    • /
    • v.49 no.2
    • /
    • pp.61-74
    • /
    • 2007
  • A mathematical modeling program called Hydrological Simulation Program-FORTRAN (HSPF) developed by the United States Environmental Protection Agency (EPA) was applied to Hwaseong watershed. It was run under BASINS (Better Assessment Science for Integrating Point and Nonpoint Sources) program, and the model was validated using monitoring data of $2002{\sim}2005$. The model efficiency of runoff ranged from good to fair in comparison between simulated and observed data, while it was from very good to poor in the water quality parameters. But its reliability and performance were within the expectation considering complexity of the watershed and pollutant sources. The nonpoint source (NPS) loading for T-N and T-P during the monsoon rainy season (June to September) was about 80% of total NPS loading, and runoff volume was also in a similar range. However, NPS loading for BOD ($55{\sim}60%$) didn't depend on rainfall because BOD was mostly discharged from point source (more than 70%). And water quality was not necessarily high during the rainy season, and showed a decreasing trend with increasing water flow. BASINS/HSPF was applied to the Hwaseong watershed successfully without difficulty, and it was found that the model could be used conveniently to assess watershed characteristics and to estimate pollutant loading including point and nonpoint sources in watershed scale.

Electricity Price Prediction Based on Semi-Supervised Learning and Neural Network Algorithms (준지도 학습 및 신경망 알고리즘을 이용한 전기가격 예측)

  • Kim, Hang Seok;Shin, Hyun Jung
    • Journal of Korean Institute of Industrial Engineers
    • /
    • v.39 no.1
    • /
    • pp.30-45
    • /
    • 2013
  • Predicting monthly electricity price has been a significant factor of decision-making for plant resource management, fuel purchase plan, plans to plant, operating plan budget, and so on. In this paper, we propose a sophisticated prediction model in terms of the technique of modeling and the variety of the collected variables. The proposed model hybridizes the semi-supervised learning and the artificial neural network algorithms. The former is the most recent and a spotlighted algorithm in data mining and machine learning fields, and the latter is known as one of the well-established algorithms in the fields. Diverse economic/financial indexes such as the crude oil prices, LNG prices, exchange rates, composite indexes of representative global stock markets, etc. are collected and used for the semi-supervised learning which predicts the up-down movement of the price. Whereas various climatic indexes such as temperature, rainfall, sunlight, air pressure, etc, are used for the artificial neural network which predicts the real-values of the price. The resulting values are hybridized in the proposed model. The excellency of the model was empirically verified with the monthly data of electricity price provided by the Korea Energy Economics Institute.

EVALUATION OF THE WATER RESOURCES ASPECT OF THE OPERATING RESULTS OF THE DAECHEONG MULTIPURPOSE DAM

  • Noh, Jaek-young
    • Water Engineering Research
    • /
    • v.5 no.1
    • /
    • pp.17-36
    • /
    • 2004
  • This paper evaluated the water resources aspect of the operating results of the Daecheong Multipurpose Dam for the last 21 years. The elements that were evaluated included the amount of water supply from the dam. volume of outflow from the regulating dam, changes in the runoff volume at the dam site and downstream, and variations in the water supply capacity of the Daecheong Multipurpose Dam and the Geum River Barrage Dam situated in the estuary. The rainfall-runoff model was used to evaluate the changes in the runoff volume, and the water balance analysis system was used to evaluate the variations in the dams'water supply capacities. The volume of domestic and industrial water supply from the Daecheong Multipurpose Dam increased to 6.1 times for the last 21 years from 61${\times}$$10^6$$m^3$ in 1981 to 375${\times}$$10^6$$m^3$in 2001. The rate of outflow to inflow of the Daecheong Dam was analyzed 1.30 times in dry season, 1.12 times in semi-dry season, and 0.90 times in rainy season. The volume of inflow to the Geum River Barrage Dam down- stream after the dam's construction increased to 1.25 times in dry season and 1.02 times in semi-dry season and decreased to 0.94 times in rainy season. The water supply capacity of the estuary barrage dam almost did not change in cases with or without the Daecheong Multipurpose Dam, but storages were largely affected by the outflows of the Daecheong Multipurpose Dam.

  • PDF

Study on Damage Reduction by Flood Inundation and the Sediments by SWAT and HEC-RAS Modeling of Flow Dynamics with Watershed Hydrology - For 27 July 2011 Heavy Storm Event at GonjiamCheon Watershed - (SWAT 및 HEC-RAS 모형의 수문-수리 연계모델링을 통한 곤지암천 유역의 하천범람 및 토사유출 피해저감 연구 - 2011년 7월 27일 국지성 폭우를 대상으로 -)

  • Jung, Chung-Gil;Joh, Hyung-Kyung;Yu, Yeong-Seok;Park, Jong-Yoon;Kim, Seong-Joon
    • Journal of The Korean Society of Agricultural Engineers
    • /
    • v.54 no.2
    • /
    • pp.87-94
    • /
    • 2012
  • This study is to evaluate flood inundation and to recommend measures of damage reduction on sediment by concentrated torrential rainfall at Gonjiamcheon Watershed (183.4 $km^2$). Firstly, the SWAT (Soil and Water Assessment Tool) was simulated streamflow and sediment at upstream. Then, we produced a map of floodplain boundary by using HEC-RAS (Hydrologic Engineering Centers River Analysis System) at downstream. The SWAT model was calibrated with 2 years (2008~2009) daily streamflow and validated for another years (2010~2011. 7. 31). The SWAT model was simulated with 3 years (2008~2010) by monthly water quality (Sediment) at Gonjiamcheon water quality station. The streamflow and sediment from SWAT model were input as boundary conditions to HEC-RAS. The results of HEC-RAS indicated that mapping of floodplain boundary was Jiwol and Jiwol 2 district. Additionally, inundation area and depth were assessed and applied BMPs scenario for managing the sediment yield.

Quantification of Directional Properties of Channel Network and Hill Slope (하천망과 사면의 방향성 정량화)

  • Park, Changyeol;Yoo, Chulsang
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.31 no.3B
    • /
    • pp.233-242
    • /
    • 2011
  • This study quantified directional properties of channel network and hill slope for a river basin by applying the von Mises distribution, also examined the relation between them. Ultimately, it was examined that whether the directional properties of channel network and hill slope have a certain relation, which might be considered to the rainfall-runoff modeling. From the results derived by analyzing the Naesung stream basin, the von Mises distribution was found well to explain the directional characteristics of directional properties of channel network. There was a clear relation between directional properties of channel network and hill slope. The higher-order streams also showed very obvious modal characteristics. The results derived in this study could be helpful to estimate more quantitatively the difference in the runoff response with respect to the directional properties of channel network and hill slope.

NUMERICAL SIMULATION OF DEBRIS FLOW USING MULTIPHASE AND NON-NEWTONIAN FLUID MODEL (비선형 점성유체의 다상유동 모형을 이용한 토석류 전산해석)

  • Lee, S.;Hwnag, K.K.
    • Journal of computational fluids engineering
    • /
    • v.22 no.1
    • /
    • pp.95-102
    • /
    • 2017
  • Debris flow is a composition of solid objects of various sizes, suspension and water, which occurs frequently as the results of landslide following heavy rainfall. This often causes extensive damage in the form of socio-economic losses and casualties as witnessed during the incident around Mt. Umyeon, Seoul in 2011. There have been numerous investigation to mitigate the impacts from debris flow; however, the estimation as preparedness measure has not been successful due to nonlinear and multiphase characteristics of phenomena both in material and process inherent in the debris flow. This study presents a numerical approach to simulate the debris flow using open source code of computational fluid dynamics, OpenFOAM with non-Newtonian viscosity model for three phase material modeling. In order to validate the proposed numerical method, the quantitative evaluations were made by comparisons with experimental results and qualitative analysis for the dispersion characteristics was carried for the case of debris flow in the actual incident from Mt. Umyeon.