• Title/Summary/Keyword: rainfall modeling

Search Result 330, Processing Time 0.045 seconds

Modeling Study for Effects of Hydrothermal Clay Vein on Slope Stability (열수변질 점토맥이 사면 안정성에 미치는 영향에 관한 모델링 연구)

  • Jo, Hwan-Ju;Jo, Ho-Young;Jeong, Kyung-Mun
    • Economic and Environmental Geology
    • /
    • v.43 no.2
    • /
    • pp.185-196
    • /
    • 2010
  • Clay veins that occurred in a slope by hydrothermal alteration, can significantly affect its slope stability. The effect of clay veins on the slope stability was investigated by numerical modeling study. Various parameters such as cohesion, internal friction angle, orientation, groundwater level, rainfall intensity and duration, have been modelled. As shear strength increased, factor of safety increased. As groundwater level developed, factor of safety decreased. For the case of slip surface developed on interface, factor of safety was lower than that for case of slip surface developed on either weathered soil or clay vein. The effect of various soil types of the slope stability was also investigated by simulating seepage through the slopes with various soils. The groundwater level significantly increased on the slopes with silty and generic soils. For the slope with sandy soil, almost no change in groundwater level was observed due to rapid drainage.

Improvement of the Ensemble Streamflow Prediction System Using Optimal Linear Correction (최적선형보정을 이용한 앙상블 유량예측 시스템의 개선)

  • Jeong, Dae-Il;Lee, Jae-Kyoung;Kim, Young-Oh
    • Journal of Korea Water Resources Association
    • /
    • v.38 no.6 s.155
    • /
    • pp.471-483
    • /
    • 2005
  • A monthly Ensemble Streamflow Prediction (ESP) system was developed by applying a daily rainfall-runoff model known as the Streamflow Synthesis and Reservoir Regulation (SSARR) model to the Han, Nakdong, and Seomjin River basins in Korea. This study first assesses the accuracy of the averaged monthly runoffs simulated by SSARR for the 3 basins and proposes some improvements. The study found that the SSARR modeling of the Han and Nakdong River basins tended to significantly underestimate the actual runoff levels and the modeling of the Seomjin River basinshowed a large error variance. However, by implementing optimal linear correction (OLC), the accuracy of the SSARR model was considerably improved in predicting averaged monthly runoffs of the Han and Nakdong River basins. This improvement was not seen in the modeling of the Seomjin River basin. In addition, the ESP system was applied to forecast probabilistic runoff forecasts one month in advance for the 3 river basins from 1998 to 2003. Considerably improvement was also achieved with OLC in probabilistic forecasting accuracy for the Han and Nakdong River basins, but not in that of the Seomjin River basin.

Analysis of Rainfall-Runoff Modeling based on DEM Grid-size -Centering on the Seolma Stream Basin- (DEM 격자크기에 따른 강우-유출 모델링(설마천유역을 중심으로))

  • Lee Jong-Kyu;Jang Hong-Jun;Choi Byung-Lyul
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2005.05b
    • /
    • pp.1169-1173
    • /
    • 2005
  • 자연현상의 강우와 유출관계를 규명하는 일은 상당히 복잡하고 어려우며 대부분의 하천이 충분한 수문정보가 부족하기 때문에 수문학적인 문제의 해결을 위한 보다 정확하고 신속한 방법이 필요하다. 지리정보시스템 (Geographical Information Systems; GIS)은 강우-유출 등 수문학적 모델링에 있어서 많은 새로운 방법을 연구할 수 있다. 우리나라 소하천 유역은 아직 수위나 유량 관측이 행해지지 않은 미계측유역이 있어 홍수시 정확한 유출량 추정이 어려운 실정이다. 이에 본 연구에서는 GIS와 WMS를 이용하여 지형특성인자값을 산정하고, 유역특성인자들을 IHP 대표유역인 설마천 유역에 적용하여 DEM 격자크기별 지형특성인자값을 비교하고, HEC-HMS 수문모형을 이용하여 유출수문곡선을 모의하고 이 결과와 실제 수문곡선과의 비교를 통하여 설마천 유역의 적정한 DEM 격자크기를 결정해 보고자 한다.

  • PDF

Irrigation Scheduling with Soil Moisture Simulation Model (토양수분이동모형을 이용한 관개계획)

  • 최진용;정하우
    • Magazine of the Korean Society of Agricultural Engineers
    • /
    • v.38 no.1
    • /
    • pp.98-106
    • /
    • 1996
  • An irrigation scheduling model, IRIS developed to evaluate irrigation demand and irrigation time for upland crops. For IRlS modeling the soil moisture simulation model, SWATRER was adopted and modified. The developed model, IRIS operated under 5 different soil moisture level that is 20%, 40%, 60%, 80% of available soil moisture and optimum soil moisture level, OSML, which is different about the growing stage and no rainfall condition during growing period. As a result for IRIS simulation, irrigation demand for 5 different soil moisture level was 332.3, 409.8, 569.3, 732.2, 539.3mm, irrigation number was 5, 8, 18, 54, 16 times and irrigation interval during peak time of consumptive use was 20, 13, 6, 2, 6 days respectively. It is appeared that the higher soil moisture level the more irrigation demand and irrigation number and the higher soil moisture level the less irrigation interval.

  • PDF

Hydrologic Modeling of an Agricultural Watershed with Tile Drains and GIS (Tile Drain 의 영향과 GIS를 연계한 농경지 유역에 대한 수문학적 모의)

  • Kim, Sang- Hyun;Son, Kwang-Ik;Han, Kun Yeun
    • Water for future
    • /
    • v.29 no.6
    • /
    • pp.203-215
    • /
    • 1996
  • A physically based model for rainfall-runoff simulation in agricultural watersheds equipped with tile drains is developed from the TOPMODEL framework. The model is based on detailed topographical information provided by the Digital Elevation Model (DEM), which is available in the Geographic Information System GRASS. Nine possible flow generation scenarions are suggested and used in the development of the model. The storage and delaying effects in the soil matrix and in the tile system are simulated with a second order linear reservoir. The model can identify the portions of the hydrators resulting from tile flow, subsurface flow and surface runoff.

  • PDF

Accounting for Uncertainty Propagation: Streamflow Forecasting using Multiple Climate and Hydrological Models

  • Kwon, Hyun-Han;Moon, Young-Il;Park, Se-Hoon;Oh, Tae-Suck
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2008.05a
    • /
    • pp.1388-1392
    • /
    • 2008
  • Water resources management depends on dealing inherent uncertainties stemming from climatic and hydrological inputs and models. Dealing with these uncertainties remains a challenge. Streamflow forecasts basically contain uncertainties arising from model structure and initial conditions. Recent enhancements in climate forecasting skill and hydrological modeling provide an breakthrough for delivering improved streamflow forecasts. However, little consideration has been given to methodologies that include coupling both multiple climate and multiple hydrological models, increasing the pool of streamflow forecast ensemble members and accounting for cumulative sources of uncertainty. The approach here proposes integration and coupling of global climate models (GCM), multiple regional climate models, and numerous hydrological models to improve streamflow forecasting and characterize system uncertainty through generation of ensemble forecasts.

  • PDF

Application of MIKE SHE Modeling System to the Gyeongancheon Watershed (경안천 유역에 대한 MIKE SHE모형의 적용)

  • Im, Sang-Jun;Kim, Hyeon-Jun;Jang, Cheol-Hee
    • Proceedings of the Korean Society of Agricultural Engineers Conference
    • /
    • 2003.10a
    • /
    • pp.463-466
    • /
    • 2003
  • The physically based distributed modelling system, MIKE SHE, has been applied to the upper sub-watershed of the Gyeongancheon watershed. A horizontal grid square was constructed to represent the spatial variations in watershed characteristics, landuse, soil, and rainfall distributions. The hydraulic model MIKE 11 was also coupled with the MIKE SHE to simulate river flow in the main and tributaries of Gyeongancheon. The simulated daily stream flow at the outlet of the watershed was compared to the observed data for the period of 1988 to 1991. The results demonstrated the applicability of a comprehensive hydrological modelling system as management tool for watershed and floodplain.

  • PDF

Modeling and prediction of rapid pollution of insulators in substations based on weather information

  • Nanayakkara, Nishantha;Nakamura, Masatoshi;Goto, Satoru;Taniguchi, Takashi
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1994.10a
    • /
    • pp.202-206
    • /
    • 1994
  • Mathematical model of the pollution rate of substation insulators is constructed, taking the model parameters as wind speed, wind direction, typhoon conditions and rainfall in an hourly basis. The main feature of model construction is to distinguish the effect of each parameter by separately analyzing the positive and negative pollution causing factors. Model parameters for the insulators of Karatsu substation, Saga, Japan were estimated and model validation was done using the actual data, in which the pollution deposits on the insulators were measured using pilot insulator and 'salt meter'. The proposed model of the pollution rate [mg/cm$^{2}$/hr] enables the identification of the effective parameters and prediction of the pollution rate so that it helps for the automatic decision making for insulator cleaning or the model can be used as a tool for the substation engineers to make precautionary measures.

  • PDF

Assessment of Actual Evapotranspiration in the Hancheon Watershed, Jeju Island (제주 한천유역의 실제 증발산량 평가)

  • Kim, Nam Won;Lee, Jeong Eun
    • Journal of Environmental Science International
    • /
    • v.22 no.5
    • /
    • pp.533-542
    • /
    • 2013
  • In this study, estimation methods for actual evapotranspiration have been studied using the concept of potential and actual evapotranspiration. Among the diverse estimation methods, SWAT-K application is chosen for hydrological modeling. For Jeju island we have characterized annual and monthly evapotranspiration using SWAT-K. In the results, simulated potential evapotranspiration reached to the 91% of small pan evaporation. With respect to the temperature lapse rate($-6^{\circ}C/km$) depending on the altitude of Halla mountain, evapotranspiration rate decreased by 7.5% compared to the status when the temperature data from the Jeju weather station were applied to the watershed. As the average of annual rainfall increased, potential evapotranspiration was increased, actual evapotranspiration was, however, decreased.

Simulating Daily Inflow and Release Rates for Irrigation Reservoirs (1) -Modeling Inflow Rates by A Linear Reservoir Model- (관개용 저수지의 일별유입량과 방류량의 모의발생(I)-선형 저수지 모형에 의한 유입량의 추정-)

  • 김현영;박승우
    • Magazine of the Korean Society of Agricultural Engineers
    • /
    • v.30 no.1
    • /
    • pp.50-62
    • /
    • 1988
  • This study refers to the development of a hydrologic model simulating daily inflow and release rates for irrigation reservoirs. A daily - based model is needed for adequate operation of an irrigation reservoir sufficing the water demand for paddy fields which is closely related to meteorological conditions. Inflow rates to a reservoir need to be accurately described, which may be simulated using a hydrologic model from daily rainfall data. And the objective of this paper is to develop, test, and apply a hydrologic model for daily runoff simmulation. A well - known tank model was selected and modified to simulate daily inflow rates. The model parameters were calibrated using observed runoff data from twelve watersheds, Relationships between the parameters and the watershed characteristics were derived by a multiple regression analysis. The simulation results were in agreement with the data. The inflow model was found to simulate low flow conditions more accurately than high flow conditions, which may be adequate for water resources utilization.

  • PDF