• Title/Summary/Keyword: rainfall modeling

Search Result 329, Processing Time 0.034 seconds

Catchment Responses in Time and Space to Parameter Uncertainty in Distributed Rainfall-Runoff Modeling (분포형 강우-유출 모형의 매개변수 불확실성에 대한 시.공간적 유역 응답)

  • Lee, Gi-Ha;Takara, Kaoru;Tachikawa, Yasuto;Sayama, Takahiro
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2009.05a
    • /
    • pp.2215-2219
    • /
    • 2009
  • For model calibration in rainfall-runoff modeling, streamflow data at a specific outlet is obviously required but is not sufficient to identify parameters of a model since numerous parameter combinations can result in very similar model performance measures (i.e. objective functions) and indistinguishable simulated hydrographs. This phenomenon has been called 'equifinality' due to inherent parameter uncertainty involved in rainfall-runoff modeling. This study aims to investigate catchment responses in time and space to various uncertain parameter sets in distributed rainfall-runoff modeling. Seven plausible (or behavioral) parameter sets, which guarantee identically-good model performances, were sampled using deterministic and stochastic optimization methods entitled SCE and SCEM, respectively. Then, we applied them to a computational tracer method linked with a distributed rainfall-runoff model in order to trace and visualize potential origins of streamflow at a catchment outlet. The results showed that all hydrograph simulations based on the plausible parameter sets were performed equally well while internal catchment responses to them showed totally different aspects; different parameter values led to different distributions with respect to the streamflow origins in space and time despite identical simulated hydrographs. Additional information provided by the computational tracer method may be utilized as a complementary constraint for filtering out non-physical parameter set(s) (or reducing parameter uncertainty) in distributed rainfall-runoff modeling.

  • PDF

Importance of the Temporal Variability of Rainfall Statistics in Stochastic Rainfall Modeling (추계강우모형에서의 강우통계의 시간적 변동성 연구)

  • Kim, Dong-Kyun;Lee, Jin-Woo;Cho, Yong-Sik
    • 한국방재학회:학술대회논문집
    • /
    • 2010.02a
    • /
    • pp.51.2-51.2
    • /
    • 2010
  • A novel approach of Poisson cluster stochastic rainfall generator was validated in its ability to reproduce important rainfall and watershed response characteristics at 104 locations of the United States. The suggested novel approach - The Hybrid Model(THM), as compared to the traditional ones, has an additional function to account for the year-to-year variability of rainfall statistics. The two-sample Kolmogorov-Smirnov test was used to see how well THM and traditional approach of Poisson cluster rainfall model reproduce the distribution of the following hydrologic variables: monthly maximum rainfall depths with 1, 3, 6, 12, and 24 hour duration, monthly maximum flow peaks at the virtual watersheds with Curve Number of 50, 60, 70, 80 and 90; and monthly runoff depths at the same virtual watersheds. In all of the testing variables, THM significantly outperformed the traditional approach. This result indicates that the year-to-year variability of rainfall statistics contains important information about the characteristics of rainfall processes that were not considered by the conventional approach of Poisson cluster rainfall modeling and that further considering it in rainfall simulation will enhance the performance of the rainfall models.

  • PDF

Development and validation of poisson cluster stochastic rainfall generation web application across South Korea (포아송 클러스터 가상강우생성 웹 어플리케이션 개발 및 검증 - 우리나라에 대해서)

  • Han, Jaemoon;Kim, Dongkyun
    • Journal of Korea Water Resources Association
    • /
    • v.49 no.4
    • /
    • pp.335-346
    • /
    • 2016
  • This study produced the parameter maps of the Modified Bartlett-Lewis Rectangular Pulse (MBLRP) stochastic rainfall generation model across South Korea and developed and validated the web application that automates the process of rainfall generation based on the produced parameter maps. To achieve this purpose, three deferent sets of parameters of the MBLRP model were estimated at 62 ground gage locations in South Korea depending on the distinct purpose of the synthetic rainfall time series to be used in hydrologic modeling (i.e. flood modeling, runoff modeling, and general purpose). The estimated parameters were spatially interpolated using the Ordinary Kriging method to produce the parameter maps across South Korea. Then, a web application has been developed to automate the process of synthetic rainfall generation based on the parameter maps. For validation, the synthetic rainfall time series has been created using the web application and then various rainfall statistics including mean, variance, autocorrelation, probability of zero rainfall, extreme rainfall, extreme flood, and runoff depth were calculated, then these values were compared to the ones based on the observed rainfall time series. The mean, variance, autocorrelation, and probability of zero rainfall of the synthetic rainfall were similar to the ones of the observed rainfall while the extreme rainfall and extreme flood value were smaller than the ones derived from the observed rainfall by the degree of 16%-40%. Lastly, the web application developed in this study automates the entire process of synthetic rainfall generation, so we expect the application to be used in a variety of hydrologic analysis needing rainfall data.

Bayesian Spatial Modeling of Precipitation Data

  • Heo, Tae-Young;Park, Man-Sik
    • The Korean Journal of Applied Statistics
    • /
    • v.22 no.2
    • /
    • pp.425-433
    • /
    • 2009
  • Spatial models suitable for describing the evolving random fields in climate and environmental systems have been developed by many researchers. In general, rainfall in South Korea is highly variable in intensity and amount across space. This study characterizes the monthly and regional variation of rainfall fields using the spatial modeling. The main objective of this research is spatial prediction with the Bayesian hierarchical modeling (kriging) in order to further our understanding of water resources over space. We use the Bayesian approach in order to estimate the parameters and produce more reliable prediction. The Bayesian kriging also provides a promising solution for analyzing and predicting rainfall data.

Transfer Functional Modeling Using Soil Moisture Measurements at a Steep Forest Hillslope (산지사면의 실측토양수분을 이용한 전이함수 모형의 적용)

  • Kim, Sang-Hyun
    • Journal of Environmental Science International
    • /
    • v.22 no.4
    • /
    • pp.415-424
    • /
    • 2013
  • In this paper, time series of soil moisture were measured for a steep forest hillslope to model and understand distinct hydrological behaviours along two different transects. The transfer function analysis was presented to characterize temporal response patterns of soil moisture for rainfall events. The rainfall is a main driver of soil moisture variation, and its stochastic characteristic was properly treated prior to the transfer function delineation between rainfall and soil moisture measurements. Using field measurements for two transects during the rainy season in 2007 obtained from the Bumrunsa hillslope located in the Sulmachun watershed, a systematic transfer functional modeling was performed to configure the relationships between rainfall and soil moisture responses. The analysis indicated the spatial variation pattern of hillslope hydrological processes, which can be explained by the relative contribution of vertical, lateral and return flows and the impact of transect topography.

Image-based rainfall prediction from a novel deep learning method

  • Byun, Jongyun;Kim, Jinwon;Jun, Changhyun
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2021.06a
    • /
    • pp.183-183
    • /
    • 2021
  • Deep learning methods and their application have become an essential part of prediction and modeling in water-related research areas, including hydrological processes, climate change, etc. It is known that application of deep learning leads to high availability of data sources in hydrology, which shows its usefulness in analysis of precipitation, runoff, groundwater level, evapotranspiration, and so on. However, there is still a limitation on microclimate analysis and prediction with deep learning methods because of deficiency of gauge-based data and shortcomings of existing technologies. In this study, a real-time rainfall prediction model was developed from a sky image data set with convolutional neural networks (CNNs). These daily image data were collected at Chung-Ang University and Korea University. For high accuracy of the proposed model, it considers data classification, image processing, ratio adjustment of no-rain data. Rainfall prediction data were compared with minutely rainfall data at rain gauge stations close to image sensors. It indicates that the proposed model could offer an interpolation of current rainfall observation system and have large potential to fill an observation gap. Information from small-scaled areas leads to advance in accurate weather forecasting and hydrological modeling at a micro scale.

  • PDF

Development of a Distributed Rainfall-Runoff System for the Guem River Basin Using an Object-oriented Hydrological Modeling System (객체지향형 수문 모델링 시스템을 이용한 금강유역 분포형 강우-유출 시스템의 개발)

  • Lee, Gi-Ha;Takara, Kaoru;Jung, Kwan-Sue;Kim, Jeong-Yup;Jeon, Ja-Hun
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2009.05a
    • /
    • pp.149-153
    • /
    • 2009
  • Physics-based distributed rainfall-runoff models are now commonly used in a variety of hydrologic applications such as to estimate flooding, water pollutant transport, sedimentation yield and so on. Moreover, it is not surprising that GIS has become an integral part of hydrologic research since this technology offers abundant information about spatial heterogeneity for both model parameters and input data that control hydrological processes. This study presents the development of a distributed rainfall-runoff prediction system for the Guem river basin ($9,835km^2$) using an Object-oriented Hydrological Modeling System (OHyMoS). We developed three types of element modules: Slope Runoff Module (SRM), Channel Routing Module (CRM), and Dam Reservoir Module (DRM) and then incorporated them systemically into a catchment modeling system under the OHyMoS. The study basin delineated by the 250m DEM (resampled from SRTM90) was divided into 14 midsize catchments and 80 sub-catchments where correspond to the WAMIS digital map. Each sub-catchment was represented by rectangular slope and channel components; water flows among these components were simulated by both SRM and CRM. In addition, outflows of two multi-purpose dams: Yongdam and Daechung dams were calculated by DRM reflecting decision makers' opinions. Therefore, the Guem river basin rainfall-runoff modeling system can provide not only each sub-catchment outflow but also dam inand outflow at one hour (or less) time step such that users can obtain comprehensive hydrological information readily for the effective and efficient flood control during a flood season.

  • PDF

A Study on the Calculation of Runoff Discharge in the Ohown river Basin Using the GIS Data and Hydrology Model (수문모형(HMS)과 GIS자료를 이용한 오원천 유역의 유출량 산정에 관한 연구)

  • 김운중;정남선;김경수
    • The Journal of Engineering Geology
    • /
    • v.10 no.3
    • /
    • pp.263-272
    • /
    • 2000
  • The main objective of this study is to simulate the rainfall-runoff relationship of the Ohwon rivet basin. For the this study, we used GIS technique and HMS(Hydrological Modeling System). In this study, watershed itself and geometric factors of watershed are extracted from DEM by using a GIS technique. The scanned data of topographical map with scale of 1:50,000 in the Ohwon river basin is used to this study and it is converted to DEM data. The parameters of Hydrological Modeling System as watershed area(A), river length, SCS Curve Number(CN) etc. are extracted by using the GIS technique in the Ohwon Basin. Extracted parameters are applied to the Hydrological Model System, then the paramenters optimized by the observed data and rainfall data. Then, the optimized parameters and Hydrological Modeling System are applied to the study area for the simulation of rainfall-runoff relationship. With the resultn of this study, GIS technique is useful to the extraction of watershed characteristics factors and Hydrological Modeling System is successful to the simulation of rainfall-runoff relationship.

  • PDF

Runoff Analysis using Spatially Distributed Rainfall Data (공간 분포된 강우를 이용한 유출 해석)

  • Lee, Jong-Hyeong;Yoon, Seok-Hwan
    • Journal of The Korean Society of Agricultural Engineers
    • /
    • v.47 no.6
    • /
    • pp.3-14
    • /
    • 2005
  • Accurate estimation of the spatial distribution of rainfall is critical to the successful modeling of hydrologic processes. The objective of this study is to evaluate the applicability of spatially distributed rainfall data. Spatially distributed rainfall was calculated using Kriging method and Thiessen method. The application of spatially distributed rainfall was appreciated to the runoff response from the watershed. The results showed that for each method the coefficient of determination for observed hydrograph was $0.92\~0.95$ and root mean square error was $9.78\~10.89$ CMS. Ordinary Kriging method showed more exact results than Simple Kriging, Universal Kriging and Thiessen method, based on comparison of observed and simulated hydrograph. The coefncient of determination for the observed peak flow was 0.9991 and runoff volume was 0.9982. The accuracy of rainfall-runoff prediction depends on the extent of spatial rainfall variability.

Soil Related Parameters Assessment Comparing Runoff Analysis using Harmonized World Soil Database (HWSD) and Detailed Soil Map (HWSD와 정밀토양도를 이용한 유출해석시 토양 매개변수 특성 비교 평가)

  • Choi, Yun Seok;Jung, Young Hun;Kim, Joo Hun;Kim, Kyung-Tak
    • Journal of The Korean Society of Agricultural Engineers
    • /
    • v.58 no.4
    • /
    • pp.57-66
    • /
    • 2016
  • Harmonized World Soil Database (HWSD) including the global soil information has been implemented to the runoff analysis in many watersheds of the world. However, its accuracy can be a critical issue in the modeling because of the limitation the low resolution reflecting the physical properties of soil in a watershed. Accordingly, this study attempted to assess the effect of HWSD in modeling by comparing parameters of the rainfall-runoff model using HWSD with the detailed soil map. For this, Grid based Rainfall-runoff Model (GRM) was employed in the Hyangseok watershed. The results showed that both of two soil maps in the rainfall-runoff model are able to well capture the observed runoff. However, compared with the detailed soil map, HWSD produced more uncertainty in the GRM parameters related to soil depth and hydraulic conductivity during the calibrations than the detailed soil map. Therefore, the uncertainty from the limited information on soil texture in HWSD should be considered for better calibration of a rainfall-runoff model.