• 제목/요약/키워드: rain intrusion

검색결과 14건 처리시간 0.018초

Numerical Case Study of Heavy Rainfall Occurred in the Central Korean Peninsula on July 26-28, 1996

  • Kim, Young-Ah;Oh, Jai-Ho
    • International Union of Geodesy and Geophysics Korean Journal of Geophysical Research
    • /
    • 제26권1호
    • /
    • pp.15-29
    • /
    • 1998
  • The numerical simulation of heavy precipitation event occurred in the central Korean Peninsula on July 26-28, 1996 was performed using the fine mesh model. ARPS (Advanced Regional Prediction System) developed by the CAPS (Center for Analysis and Prediction of Storms). Usually, the heavy rainfalls occurred at late July in the Korean Peninsula were difficult to predict, and showed very strong rainfall intensity. As results, they caused a great loss of life and property. As it usual, this case was unsuccessful to predict the location of rain band and the precipitation intensity with the coarse-mesh model. The same case was, however, simulated well with fine-mesh storm-scale model, ARPS. Moisture band at 850 hPa appeared along the Changma Front in the area of China through central Korea passed Yellow Sea. Also the low-level jet at 700 hPa existed in the Yellow Sea through central Korea and they together offered favorable condition to induce heavy rainfall in that area. The convective activities developed to a meso-scale convective system were observed at near the Yangtze River and moved to the central Korean Peninsula. Furthermore, the intrusion of warm and moist air, origninated from typhoon, into the Asia Continent might result in heavy rainfall formation through redistribution of moisture and heat. In the vertical circulation, the heavy rainfall was formed between the upper- and low-level jets, especially, the entrance region of the upper-level jet above the exit the region of the low-level jet. The low level convergence, the upper level divergence and the strong vertical wind were organized to the very north of the low level jet and concentrated on tens to hundreds km horizontal distance. These result represent the upper- and low-level jets are one of the most important reasons on the formation of heavy precipitation.

  • PDF

수산화칼슘 용해도와 공극률 감소를 고려한 간략화 된 탄산화 모델 (Simplified Carbonation Model Considering Ca(OH)2 Solubility and Porosity Reduction)

  • 이윤;권성준;박기태
    • 한국구조물진단유지관리공학회 논문집
    • /
    • 제19권1호
    • /
    • pp.128-138
    • /
    • 2015
  • 탄산화는 지하구조물과 같이 이산화탄소의 농도가 높고 강우로부터 보호되는 콘크리트 구조물에 매우 심각한 열화현상이다. 탄산화 깊이 및 수화물의 변화를 평가하기 위해 많은 연구가 진행되고 있으나 해석모델의 복잡성, 이산화탄소 확산계수 모델링 등의 어려움으로 인해 실제 탄산화 거동을 제한적으로 모사하고 있다. 본 연구에서는 기존의 탄산화 모델링 (Ducom)에 대하여 확산계수 모델링, 공극률 감소 모델, 이산화탄소의 장기반응률 등을 개선하여 개선된 탄산화 모델을 제시하였다. 검증을 위하여 온도변화를 고려한 촉진탄산화 시험. 공극률 평가 시험 (수은압입법)을 수행하였으며, 탄산화 깊이를 개선되기 전/후의 모델과 비교하였다. 또한 수산화칼슘의 중량변화와 실태조사결과를 이용하여 낮은 이산화탄소에 노출된 콘크리트 구조물의 탄산화 깊이를 제안된 모델과 비교하였다. 제안된 모델은 확산계수 감소성, 공극률 감소성을 적절하게 반영하여 기존의 모델에 비해 합리적인 결과 (수산화칼슘 소모량, 탄산화 깊이)를 나타내었다.

서천 해안지역 길산천 소유역에서의 고염분 지하수와 씻김 현상 (Fossil Saline Groundwater and Their Flushing Out At Gilsan Stream Catchment in the Western Coastal Area of Seocheon, Korea)

  • 문상호;윤윤열;이진용
    • 자원환경지질
    • /
    • 제55권6호
    • /
    • pp.671-687
    • /
    • 2022
  • 우리나라 서·남해 연안 지대는 해안으로부터 10 km 범위 내 관정의 약 47%가 해수의 영향을 받은 것으로 보고되었고, 지하수의 염분화 원인이 해수 침투 때문일 것이라 해석되어 왔다. 서천지역의 길산천은 금강하구둑이 건설·운영되어 매립 농지로 이용되기 전까지는 감조하천으로서 유역 내에는 해수에 의한 퇴적물이 생성되고 그 내부에는 염분 공극수가 존재했을 것으로 추정된다. 길산천 소유역 내 지하수는 EC 값이 111~21,000 µS/cm 범위로서 매우 높은 염분 지하수가 존재하며, 수질 유형은 Ca(or Na)-HCO3, Ca(or Na)-HCO3(Cl), Na-Cl(HCO3), Na-Cl 등 다양하게 나타나고 있다. 이러한 수질의 다양성은 강수 및 지표수로부터 유입 생성되는 담수 지하수 수질과 해수 수질의 혼합 현상 때문에 기인되는 것으로 판단된다. 금번 연구에서는 이러한 수질 다양성 및 염분 지하수의 존재가 현재 진행 중인 해수 침투 때문인지 아니면 조간대 퇴적물 내 고(古)염분 공극수가 씻겨나가는 과정에서 잔존하기 때문인지를 논의하였다. 이를 위해, 연구지역 내 강수, 지표수, 해수, 지하수에 대하여 수질 특성을 비교하고, 삼중수소 함량, 산소/수소 안정동위원소 조성, 87Sr/86Sr 비 등을 비교·검토하였다. 산소/수소 안정동위원소 조성으로 볼 때, EC 값이 큰 염분 지하수들의 물 성분은 담수 지하수와 지표수 물이 혼합된 물로 구성되어 있으며, 삼중수소 함량에 의해 추정되는 연령이 젊은 지하수들은 NO3 함량이 높은 지표 영향을 많이 받은 것들로 나타나, 연구지역의 지하수 수질 진화 과정에는 담수 지하수 및 지표수가 지속적으로 영향을 미치고 있는 것으로 나타났다. 또한, 담수 지하수/지표수와 해수를 2개의 단성분으로 가정하고 Cl 함량 변화에 따른 Na/Cl ratio와 나트륨흡착도(SAR)의 변화 패턴을 고려하면, 연구지역 지하수들은 해수 침투가 아니라 고염분 지하수의 씻김 현상을 겪고 있는 것으로 해석되었다.

영동지역 악기상 사례에 대한 MTSAT 위성 영상의 특징 (MTSAT Satellite Image Features on the Sever Storm Events in Yeongdong Region)

  • 김인혜;권태영;김덕래
    • 대기
    • /
    • 제22권1호
    • /
    • pp.29-45
    • /
    • 2012
  • An unusual autumn storm developed rapidly in the western part of the East sea on the early morning of 23 October 2006. This storm produced a record-breaking heavy rain and strong wind in the northern and middle part of the Yeong-dong region; 24-h rainfall of 304 mm over Gangneung and wind speed exceeding 63.7 m $s^{-1}$ over Sokcho. In this study, MTSAT-1R (Multi-fuctional Transport Satellite) water vapor and infrared channel imagery are examined to find out some features which are dynamically associated with the development of the storm. These features may be the precursor signals of the rapidly developing storm and can be employed for very short range forecast and nowcasting of severe storm. The satellite features are summarized: 1) MTSAT-1R Water Vapor imagery exhibited that distinct dark region develops over the Yellow sea at about 12 hours before the occurrence of maximum rainfall about 1100 KST on 23 October 2006. After then, it changes gradually into dry intrusion. This dark region in the water vapor image is closely related with the positive anomaly in 500 hPa Potential Vorticity field. 2) In the Infrared imagery, low stratus (brightness temperature: $0{\sim}5^{\circ}C$) develops from near Bo-Hai bay and Shanfung peninsula and then dissipates partially on the western coast of Korean peninsula. These features are found at 10~12 hours before the maximum rainfall occurrence, which are associated with the cold and warm advection in the lower troposphere. 3) The IR imagery reveals that two convective cloud cells (brightness temperature below $-50^{\circ}C$) merge each other and after merging it grows up rapidly over the western part of East sea at about 5 hours before the maximum rainfall occurrence. These features remind that there must be the upward flow in the upper troposphere and the low-layer convergence over the same region of East sea. The time of maximum growth of the convective cloud agrees well with the time of the maximum rainfall.