• Title/Summary/Keyword: rain intensity

Search Result 208, Processing Time 0.027 seconds

Design of the Satellite Beacon Receiver Using Array Based Digital Filter (다중배열 디지털필터를 이용한 위성비콘 수신기 설계)

  • Lee, Kyung-Soon;Koo, Kyung-Heon
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.27 no.10
    • /
    • pp.909-916
    • /
    • 2016
  • The beacon receiver is an equipment which detects and measures the signal strength of transmitting satellite beacon signal. Beacon signals transmitted by satellites are low power continuous wave(CW) signals without any modulation intended for antenna steering to satellite direction and power control purposes on the earth. The beacon signal detection method using a very narrow band analog filter and RSSI(Received Signal Strength Intensity) has been typically used. However, it requires the implementation to track the frequency at the beacon receiver, thus a beacon frequency variation of the satellite due to temperature changes and long-term operation. Therefore, in this paper, the beacon signal detection receiver is designed by using a very narrow band digital filter array for a faster acquisition and SNR(Signal to Noise Ratio) method detection. For this purpose, by calculating the satellite link budget with the rain attenuation between satellite and ground station, and then extracting the received $C/N_o$ of the beacon signal, this work derives the bandwidth and the array number of the configured digital filter that gives the required C/N.

Analysis of Slope Hazard-Triggering Rainfall Characteristics in Gangwon Province by Database Construction (DB구축을 통한 강원지역 사면재해 유발강우특성 분석)

  • Yune, Chan-Young;Jun, Kyoung-Jea;Kim, Kyung-Suk;Kim, Gi-Hong;Lee, Seung-Woo
    • Journal of the Korean Geotechnical Society
    • /
    • v.26 no.10
    • /
    • pp.27-38
    • /
    • 2010
  • In every summer season, most of the slope failures and debris flows occurr due to seasonal rain, typhoon, and localized extreme rainfall in Gangwon Province where 83% of the area is of mountain region. To investigate the slope-hazard triggering rainfall characteristics in Gangwon Province, slope hazard data, precipitation records, and forest fire data were collected and the DATABASE was constructed. Analysis results based on the DATABASE showed that many slope hazards occurred when there was little rainfall and the preceding rainfall had more effect on the slope hazard than the rainfall intensity at the day of hazard. It also showed that the burned area by forest fire was highly susceptible to slope hazard with low rainfall intensity, and the slope hazard in burned area showed highest frequency, especially, under the rainfall below 2-year return period.

Characteristics of Heavy Rainfall for Landslide-triggering in 2011 (2011년 집중호우로 인한 산사태 발생특성 분석)

  • Kim, Suk-Woo;Chun, Kun-Woo;Kim, Jin-Hak;Kim, Min-Sik;Kim, Min-Seok
    • Journal of Korean Society of Forest Science
    • /
    • v.101 no.1
    • /
    • pp.28-35
    • /
    • 2012
  • Rainfall is widely recognized as a major landslide-triggering factor. Most of the latest landslides that occurred in South Korea were caused by short-duration heavy rainfall. However, the relationship between rainfall characteristics and landslide occurrence is poorly understood. To examine the effect of rainfall on landslide occurrence, cumulative rainfall(mm) and rainfall intensity(mm/hr) of serial rain and antecedent rainfall(mm) were analyzed for 18 landslide events that occurred in the southern and central regions of South Korea in June and July 2011. It was found that all of these landslides occurred by heavy rainfall for one or three days, with the rainfall intensity exceeding 30 mm/hr or with a cumulative rainfall of 200 mm. These plotted data are beyond the landslide warning criteria of Korea Forest Service and the critical line of landslide occurrence for Gyeongnam Province. It was also found that the time to landslide occurrence after rainfall start(T) was shortened with the increasing average rainfall intensity(ARI), showing an exponential-decay curve, and this relation can be expressed as "T = $94.569{\cdot}exp$($-0.068{\cdot}ARI$)($R^2$=0.64, p<0.001)". The findings in this study may provide important evidences for the landslide forecasting guidance service of Korea Forest Service as well as essential data for the establishment of non-structural measures such as a warning and evacuation system in the face of sediment disasters.

Calculation of Unit Hydrograph from Discharge Curve, Determination of Sluice Dimension and Tidal Computation for Determination of the Closure curve (단위유량도와 비수갑문 단면 및 방조제 축조곡선 결정을 위한 조속계산)

  • 최귀열
    • Magazine of the Korean Society of Agricultural Engineers
    • /
    • v.7 no.1
    • /
    • pp.861-876
    • /
    • 1965
  • During my stay in the Netherlands, I have studied the following, primarily in relation to the Mokpo Yong-san project which had been studied by the NEDECO for a feasibility report. 1. Unit hydrograph at Naju There are many ways to make unit hydrograph, but I want explain here to make unit hydrograph from the- actual run of curve at Naju. A discharge curve made from one rain storm depends on rainfall intensity per houre After finriing hydrograph every two hours, we will get two-hour unit hydrograph to devide each ordinate of the two-hour hydrograph by the rainfall intensity. I have used one storm from June 24 to June 26, 1963, recording a rainfall intensity of average 9. 4 mm per hour for 12 hours. If several rain gage stations had already been established in the catchment area. above Naju prior to this storm, I could have gathered accurate data on rainfall intensity throughout the catchment area. As it was, I used I the automatic rain gage record of the Mokpo I moteorological station to determine the rainfall lntensity. In order. to develop the unit ~Ydrograph at Naju, I subtracted the basic flow from the total runoff flow. I also tried to keed the difference between the calculated discharge amount and the measured discharge less than 1O~ The discharge period. of an unit graph depends on the length of the catchment area. 2. Determination of sluice dimension Acoording to principles of design presently used in our country, a one-day storm with a frequency of 20 years must be discharged in 8 hours. These design criteria are not adequate, and several dams have washed out in the past years. The design of the spillway and sluice dimensions must be based on the maximun peak discharge flowing into the reservoir to avoid crop and structure damages. The total flow into the reservoir is the summation of flow described by the Mokpo hydrograph, the basic flow from all the catchment areas and the rainfall on the reservoir area. To calculate the amount of water discharged through the sluiceCper half hour), the average head during that interval must be known. This can be calculated from the known water level outside the sluiceCdetermined by the tide) and from an estimated water level inside the reservoir at the end of each time interval. The total amount of water discharged through the sluice can be calculated from this average head, the time interval and the cross-sectional area of' the sluice. From the inflow into the .reservoir and the outflow through the sluice gates I calculated the change in the volume of water stored in the reservoir at half-hour intervals. From the stored volume of water and the known storage capacity of the reservoir, I was able to calculate the water level in the reservoir. The Calculated water level in the reservoir must be the same as the estimated water level. Mean stand tide will be adequate to use for determining the sluice dimension because spring tide is worse case and neap tide is best condition for the I result of the calculatio 3. Tidal computation for determination of the closure curve. During the construction of a dam, whether by building up of a succession of horizontael layers or by building in from both sides, the velocity of the water flowinii through the closing gapwill increase, because of the gradual decrease in the cross sectional area of the gap. 1 calculated the . velocities in the closing gap during flood and ebb for the first mentioned method of construction until the cross-sectional area has been reduced to about 25% of the original area, the change in tidal movement within the reservoir being negligible. Up to that point, the increase of the velocity is more or less hyperbolic. During the closing of the last 25 % of the gap, less water can flow out of the reservoir. This causes a rise of the mean water level of the reservoir. The difference in hydraulic head is then no longer negligible and must be taken into account. When, during the course of construction. the submerged weir become a free weir the critical flow occurs. The critical flow is that point, during either ebb or flood, at which the velocity reaches a maximum. When the dam is raised further. the velocity decreases because of the decrease\ulcorner in the height of the water above the weir. The calculation of the currents and velocities for a stage in the closure of the final gap is done in the following manner; Using an average tide with a neglible daily quantity, I estimated the water level on the pustream side of. the dam (inner water level). I determined the current through the gap for each hour by multiplying the storage area by the increment of the rise in water level. The velocity at a given moment can be determined from the calcalated current in m3/sec, and the cross-sectional area at that moment. At the same time from the difference between inner water level and tidal level (outer water level) the velocity can be calculated with the formula $h= \frac{V^2}{2g}$ and must be equal to the velocity detertnined from the current. If there is a difference in velocity, a new estimate of the inner water level must be made and entire procedure should be repeated. When the higher water level is equal to or more than 2/3 times the difference between the lower water level and the crest of the dam, we speak of a "free weir." The flow over the weir is then dependent upon the higher water level and not on the difference between high and low water levels. When the weir is "submerged", that is, the higher water level is less than 2/3 times the difference between the lower water and the crest of the dam, the difference between the high and low levels being decisive. The free weir normally occurs first during ebb, and is due to. the fact that mean level in the estuary is higher than the mean level of . the tide in building dams with barges the maximum velocity in the closing gap may not be more than 3m/sec. As the maximum velocities are higher than this limit we must use other construction methods in closing the gap. This can be done by dump-cars from each side or by using a cable way.e or by using a cable way.

  • PDF

Optimal Determination of Loss Rate Functions by Runoff Modelling (유출 모델에 의한 손실함수의 결정)

  • Lee, Ja Hyung;Whang, Man Ha
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.5 no.4
    • /
    • pp.57-64
    • /
    • 1985
  • An optimization model is presented that can be used in the determination of a loss rate function and conceptual runoff models using observed rainfall and runoff data. In order to estimate the lumped parameters and to control inputs of the model, the differential equations, linear for underground flow and non-linear for overland flow, are transformed into state equations. Parameters of a loss rate function and runoff model under stationary assumption can be determined by the following procedures: optimization technique, linear control and non-linear curve fitting theory using several multiperiod storms simultaneously or using individual multiperiod storms. An infiltration equation that includes rainful intensity is used to dtermine the effective rainfall for a given rain of varying. The optimization model is applied to storms in Hyong Song watershed of Wonju area. The results of the new model are compared with earlier one.

  • PDF

A Development of Washoff Model for Suspended Solids in Urban Areas (도시유역의 부유고형물 유출평가를 위한 쓸림모형 개발)

  • Joo, Jingul;Jung, Donghwi;Kim, Joonghoon;Park, Moojong
    • Journal of Korean Society on Water Environment
    • /
    • v.26 no.5
    • /
    • pp.789-795
    • /
    • 2010
  • Suspended Solid (SS) is one of the main pollutants and discharges with attached other pollutants such as heavy metal and toxic substance. It is very important to estimate and forecast the release characteristics of SS for water quality improvement. The current studies assumed that SS release rate is proportional to the rain intensity and suggested exponential washoff models. These models related to the shear force of flow. In this study, a new washoff model is suggested based on relation with SS release rate and mean flow rate of the basin surface which is closely related to the shear force. The proposed model is applied to the Goonja drainage district in Seoul, Korea. The new washoff model simulates the SS discharge more accurately in the various rainfall types. The model can be widely applied to the real problems such as the management of non-point source pollutant and the design of treatment facilities.

Effects of Snowfall Intensity on Freeway Travel Speed (Focused on Seohaean Freeway) (강설에 따른 고속도로 주행속도 변화연구 - 서해안고속도로를 중심으로 -)

  • Hong, Sung-Min;Oh, Cheol;Yang, Chung-Hoen;Jeon, Woo-Hoon
    • International Journal of Highway Engineering
    • /
    • v.14 no.4
    • /
    • pp.93-101
    • /
    • 2012
  • PURPOSES : Adverse weather conditions such as heavy rain, heavy snowfall, and thick fog and so on have highly affect on the change in traffic conditions on the road. In particular, heavy snowfall causes capacity reduction as well as crash occurrence. This study investigated the effects of snowfall on speed on a freeway. METHODS : Vehicle detection systems data were matched with corresponding weather station data by regression analysis. RESULTS : The results show that the travel speed is reduced by 6.7% under little snowfall and by 12.8% under heavy snowfall. Regarding the speed variation, 8.7% and 114.7% increases are observed under little snowfall and heavy snowfall, respectively. It is also found that 1 cm increase in snowfall leads to 0.4% decrease in travel speed. In addition, the travel speed increases by 0.4% when the temperature increases by $1^{\circ}C$. CONCLUSIONS : It is expected that the outcome of this study will be useful in establishing more effective strategies for winter operations and road maintenance in practice.

Analysis of Changes in Extreme Weather Events Using Extreme Indices

  • Kim, Byung-Sik;Yoon, Young-Han;Lee, Hyun-Dong
    • Environmental Engineering Research
    • /
    • v.16 no.3
    • /
    • pp.175-183
    • /
    • 2011
  • The climate of the $21^{st}$ century is likely to be significantly different from that of the 20th century because of human-induced climate change. An extreme weather event is defined as a climate phenomenon that has not been observed for the past 30 years and that may have occurred by climate change and climate variability. The abnormal climate change can induce natural disasters such as floods, droughts, typhoons, heavy snow, etc. How will the frequency and intensity of extreme weather events be affected by the global warming change in the $21^{st}$ century? This could be a quite interesting matter of concern to the hydrologists who will forecast the extreme weather events for preventing future natural disasters. In this study, we establish the extreme indices and analyze the trend of extreme weather events using extreme indices estimated from the observed data of 66 stations controlled by the Korea Meteorological Administration (KMA) in Korea. These analyses showed that spatially coherent and statistically significant changes in the extreme events of temperature and rainfall have occurred. Under the global climate change, Korea, unlike in the past, is now being affected by extreme weather events such as heavy rain and abnormal temperatures in addition to changes in climate phenomena.

Development and Assessment of a Dynamic Fate and Transport Model for Lead in Multi-media Environment

  • Ha, Yeon-Jeong;Lee, Dong-Soo
    • Environmental Engineering Research
    • /
    • v.14 no.1
    • /
    • pp.53-60
    • /
    • 2009
  • The main objective was to develop and assess a dynamic fate and transport model for lead in air, soil, sediment, water and vegetation. Daejeon was chosen as the study area for its relatively high contamination and emission levels. The model was assessed by comparing model predictions with measured concentrations in multi-media and atmospheric deposition flux. Given a lead concentration in air, the model could predict the concentrations in water and soil within a factor of five. Sensitivity analysis indicated that effective compartment volumes, rain intensity, scavenging ratio, run off, and foliar uptake were critical to accurate model prediction. Important implications include that restriction of air emission may be necessary in the future to protect the soil quality objective as the contamination level in soil is predicted to steadily increase at the present emission level and that direct discharge of lead into the water body was insignificant as compared to atmospheric deposition fluxes. The results strongly indicated that atmospheric emission governs the quality of the whole environment. Use of the model developed in this study would provide quantitative and integrated understanding of the cross-media characteristics and assessment of the relationships of the contamination levels among the multi-media environment.

Revision of Agricultural Drainage Design Standards (농업생산기반정비사업 계획설계기준 배수편 개정)

  • Kim, Kyoung Chan;Kim, Younghwa;Song, Jaedo;Chung, Sangok
    • KCID journal
    • /
    • v.21 no.1
    • /
    • pp.32-44
    • /
    • 2014
  • In Korea, global warming caused by the climate changes impacted on weather system with increase in frequency and intensity of precipitation, and the rainfall pattern changes significantly by regional groups. Furthermore, it is expected that the regional and annual fluctuation ranges of the rainfall in the future would be more severe. Nowadays, agricultural drainage system designed by the existing standard of 20-year return period and 2 days of fixation time cannot deal with the increment rainfall such as localized heavy rain and local torrential rainfalls. Therefore, it is required to reinforce the standard of the drainage system in order to reduce the agricultural flood damage brought by unusual weather. In addition, it is needed to improve the standard of agricultural drainage design in order to cultivate farm products in paddy fields as facility vegetable cultivation and up-land field crop have been damaged by the moisture injury and flooding. In order to prepare for the changes of rainfall pattern due to climate changes and improve the agricultural drainage design standards by the increase of cultivating farm products, the purpose of this study is to examine the impact of climate changes, the changes of relative design standard, and the analytic situation of agricultural flood damages, to consider the drainage design standard revision, and finally to prepare for enhanced agricultural drainage design standards.

  • PDF