• 제목/요약/키워드: rain event

검색결과 124건 처리시간 0.029초

연속적인 극한호우사상의 발생을 가정한 거대홍수모의 (Mega Flood Simulation Assuming Successive Extreme Rainfall Events)

  • 최창현;한대건;김정욱;정재원;김덕환;김형수
    • 한국습지학회지
    • /
    • 제18권1호
    • /
    • pp.76-83
    • /
    • 2016
  • 최근 연속적인 태풍에 의한 일련의 극한 호우 사상으로 홍수가 발생하였고, 이로 인해 인명과 막대한 재산피해가 발생하였다. 본 연구에서는 연속 호우 사상으로 인해 발생한 극한홍수를 거대홍수라고 정의하고, 일정 시간 간격으로 극한 호우 사상이 연속적으로 발생 될 수 있음을 가정하여 가상의 거대홍수 시나리오를 구성하였다. 최소 무강우 시간 결정(Inter Event Time Definition, IETD)방법을 사용하여 연속적인 강우의 시간 간격을 결정하였으며, IETD에 의해 산정된 시간 간격 안에서 호우 사상을 연속적으로 발생시켜 평창강 유역을 대상으로 거대홍수를 모의하였다. 즉, (1) 기록된 극한 호우 사상의 연속적인 발생 (2) 기왕 자료를 기반으로 빈도해석에 의해 산정된 설계 호우 사상의 연속적인 발생을 가정하여 거대홍수를 모의하였다. 연속 호우 사상으로 인한 거대홍수는 단일 호우 사상으로 인한 일반 홍수에 비해 6~17%의 홍수량이 증가하는 것으로 나타났다. 앞의 호우 사상으로 인한 홍수량에 비해 뒤에 오는 호우로 인한 홍수량의 증가는 많지 않지만, 연속적인 호우는 두 번의 홍수피해를 가져오므로 가상의 거대홍수로 인한 홍수 피해는 매우 클 것으로 판단된다. 따라서 본 연구와 같이 가상의 강우 시나리오를 통해 예상하지 못한 연속적인 홍수 재해와 같은 비상 상황에 대비할 방안을 마련할 필요가 있을 것으로 사료된다.

시강우 자료를 이용한 계절별 강수특성 변화분석 (Characterization of the temporal variability of seasonal precipitation using hourly precipitation data)

  • 김광섭;조현곤;이재응
    • 한국수자원학회:학술대회논문집
    • /
    • 한국수자원학회 2011년도 학술발표회
    • /
    • pp.399-399
    • /
    • 2011
  • 최근 한반도와 세계 곳곳에서 기후변화로 야기되는 이상기후에 의한 피해가 늘고 있으며, 그 피해 규모와 빈도 또한 점점 증가하는 추세이다. 이러한 추세 속에서 인적, 물적 피해를 최소화하기 위해 세계 각국이 기후변화에 대한 정확한 예측을 위한 많은 노력과 연구가 진행되고 있다. 지금까지 수행된 연구들은 일반적으로 강수특성의 변화를 파악하기 위해서 연 및 월 최대 강우량, 지속시간별 최대 강우량 등 총량적 개념을 이용한 연구가 대부분이다. 그러나 이는 실제 강수사상의 구조적 변화를 파악하는 데 있어서 한계가 있다. 본 연구에서는 전국 기상관측소 59개의 지점에 대한 1961년-2009년까지의 시계열 강수자료를 이용하여 지점 및 유역별 강수사상의 number of rain even, duration, intensity, quantity 시간분포 구조의 변화를 파악하고자 하였다. 분석결과 number of rain event와 total quantity는 전국적으로 증가 하였으며 total rain hour는 남해안 지역을 제외한 전국에서 증가 하는 것으로 분석 되었다. 결과를 바탕으로 강수변화의 패턴과 추세를 보다 정확하게 파악하고 미래강수 예측에 유용한 자료로 활용될 것으로 사료된다.

  • PDF

지붕 강우유출수를 처리하는 빗물정원의 환경적 효과 평가 (Evaluation on the environmental effects of rain garden treating roof stormwater runoff)

  • ;;김이형
    • 한국습지학회지
    • /
    • 제18권1호
    • /
    • pp.10-15
    • /
    • 2016
  • 빗물정원은 강우유출수를 현장에서 관리하는 LID 기술이며 보통 유역면적의 1% 이내의 면적에 적용된다. 본 연구는 지붕 강우유출수를 처리하는 빗물정원의 환경적 효과를 평가하기 위하여 수행되었으며, 강우시 모니터링은 2012년 3월부터 2014년 8월까지 총 19개의 강우사상에 대해 수행되었다. 19개의 강우사상 중에서 빗물정원에 유입된 강우유입수가 유출된 경우는 약 32%로 나타났으며, 이 경우 평균 강우량은 25mm으로 나타났다. 모니터링 결과 빗물정원은 강우시 첨두 유출율을 낮추고 지연시킴으로써 수문학적 물순환 특성을 개선시키는 것으로 나타났다. 또한 빗물정원은 강우량 25mm 이하의 강우유출수의 대부분을 저류 및 침투시킴으로써 지붕에서 유출되는 비점오염물질 저감에 크게 기여하는 것으로 평가되었다. 빗물정원은 물순환 및 비점오염물질 저감과 더불어 경관성을 제공함으로써 시민들의 심미적 효과에 기여하는 것으로 평가되었다. 본 연구에서 수행된 결과는 향후 빗물정원의 설계인자로 활용 가능하다.

수치모델을 이용한 인공증우에 따른 PM10 저감효과 분석 (Analysis of PM10 Reduction Effects with Artificial Rain Enhancement Using Numerical Models)

  • 임윤규;김부요;장기호;차주완;이용희
    • 대기
    • /
    • 제32권4호
    • /
    • pp.341-351
    • /
    • 2022
  • Recently, interest in the possibility of a washout effect using artificial rain enhancement technology to reduce high-concentration fine dust is growing. Therefore, in this study, the reduction rate of PM10 concentration according to the amount of artificial rain enhancement was calculated during Asian Dust event which occurred over the Korean Peninsula on March 29, 2021 using air quality model [i.e., Community Multiscale Air Quality (CMAQ)] combined with the mesoscale model for artificial rain enhancement (i.e., WRF-MMS). According to WRF-MMS, the washout effect lasted 5 hours, and the maximum precipitation rate was calculated to be 1.5 mm hr-1. According the CMAQ results, the PM10 reduction rate was up to 22%, and the affected area was calculated to be 6.4 times greater than that of the artificial rain enhancement area. Even if the maximum amount of precipitation per hour is lowered to 0.8 mm hr-1 (about 50% level), the PM10 reduction rate appears to be up to 16%. In other words, it is believed that this technique can be used as a direct method for reducing high-concentration fine dust even when the artificial rain enhancement effect is weak.

강우에 의한 중랑천의 수질 특성 변화 연구 (Hydrochemical Characteristics and Changes by Rainfall in the Jungrang River)

  • 김연태;김유리;우남칠;현승규
    • 한국물환경학회지
    • /
    • 제22권4호
    • /
    • pp.666-671
    • /
    • 2006
  • Effects of a rainfall event (July 28, 2005) on the hydrochemical characteristics of the Jungrang river, the biggest tributary of the Han river, was investigated. Significant spatial variations in the hydrochemical characteristics were observed. At JR2 location, concentrations of T-N and T-P were relatively low indicating occurrence of active oxidation in the stepped drop structure. At JR3 location, concentrations of Na, K, Cl, $NH_4-N$ and EC were elevated suggesting increased discharge from the nearby waste-water treatment plant and tributaries. The rain event diluted major dissolved ion concentrations in the river by 12~52%. The $NO_3-N$ levels were preserved during the rain then increased about twofold after rainfall, suggesting increased discharge of nitrate-contaminated groundwater. Heavy metals including Cd, Co, Cr, Cu and Pb were not detected in all water samples and the leachates from surface sediment samples. Concentrations of Fe, Mn, Al and Zn were below the Korean Drinking Water Guideline. Results of this study suggested that establishment of water-quality monitoring protocols describing temporal and spatial variations in parameters sensitive to rainfall events, relatively steady factors, and contaminant sources is required.

우리나라 사회기반시설의 기후변화 취약성 평가 - 전문가 설문조사를 바탕으로 - (Assessing Vulnerability to Climate Change of the Physical Infrastructure in Korea Through a Survey of Professionals)

  • 명수정;이동규
    • 환경영향평가
    • /
    • 제18권6호
    • /
    • pp.347-357
    • /
    • 2009
  • This study conducted a vulnerability assessment on Korea's physical infrastructure to provide base data for developing strategies to strengthen Korea's ability to adapt to climate change. The assessment was conducted by surveying professionals in the field of infrastructure and climate change science. A vulnerability assessment was carried out for seven climate change events: average temperature increases, sea level rise, typhoons and storm surges, floods and heavy rain, drought, severe cold, and heat waves. The survey asked respondents questions with respect to the consequences of each climate change event, the urgency of adaptation to climate change, and the scale of investment for adaptation to each climate change event. Thereafter, management priorities for infrastructure were devised and implications for policy development were suggested. The results showed that respondents expected the possibility of "typhoons and storm surges" and "floods and heavy rain" to be the most high. Respondents indicated that infrastructure related to water, transportation, and the built environment were more vulnerable to climate change. The most vulnerable facilities included river related facilities such as dams and riverbanks in the "water" category and seaports and roads in the "transport and communication" category. The results found were consistent with the history of natural disasters in Korea.

2D-Video Distrometer를 이용한 강수의 물리적 특성에 관한 사례연구 (Case Study on the Physical Characteristics of Precipitation using 2D-Video Distrometer)

  • 박종길;천은지;정우식
    • 한국환경과학회지
    • /
    • 제25권3호
    • /
    • pp.345-359
    • /
    • 2016
  • This study analyze the synoptic meteorological cause of rainfall, rainfall intensity, drop size distribution(DSD), fall velocity and oblateness measured by the 2D-Video distrometer(2DVD) by comparing two cases which are heavy rainfall event case and a case that is not classified as heavy rainfall but having more than $30mm\;h^{-1}$ rainrate in July, 2014 at Gimhae region. As a results; Over the high pressure edge area where strong upward motion exists, the convective rain type occurred and near the changma front, convective and frontal rainfall combined rain type occurred. Therefore, rainrate varies based on the synoptic meteorological condition. The most rain drop distribution appeared in the raindrops with diameters between 0.4 mm and 0.6 mm and large particles appeared for the convective rain type since strong upward motion provide favorable conditions for the drops to grow by colliding and merging so the drop size distribution varies based on the location or rainfall types. The rainfall phases is mainly rain and as the diameter of the raindrop increase the fall velocity increase and oblateness decrease. The equation proposed based on the 2DVD tends to underestimated both fall velocity and oblateness compared with observation. Since these varies based on the rainfall characteristics of the observation location, standard equation for fall velocity and oblateness fit for Gimhae area can be developed by continuous observation and data collection hereafter.

장마전선에서 발생한 2006년 6월 25일의 호우 사례에 대한 종관자료의 운동학적 특성 분석 (Analysis of Kinematic Characteristics of Synoptic Data for a Heavy Rain Event(25 June 2006) Occurred in Changma Front)

  • 김미애;허복행;김경익;이동인
    • 대기
    • /
    • 제19권1호
    • /
    • pp.37-51
    • /
    • 2009
  • Kinematic characteristics of a heavy rainfall event occurred in Changma front are analyzed using synoptic weather charts, satellite imagery and NCEP(National Centers for Environmental Prediction) / NCAR(National Centers for Atmospheric Research) reanalysis data. The heavy rainfall is accompanied with mesoscale rain clouds developing over the Southwest region of Korea during the period from 0300 LST to 2100 LST 25 June 2006. The surface cyclone in the Changma front is generated and developed rapidly when it meets following vertical conditions: The maximum value of relative vorticity is appeared at 700 hPa and is extended gradually near the surface. It is thought that the vertical structure of relative vorticity is closely related with the descent of strong wind zone exceeding $10ms^{-1}$. The jet core at 200 hPa is shifted southward and extended downward and the low-level jet stream associated with upper-level jet stream appeared at 850 hPa. Kinematic features of heavy rainfall system at cyclone-generating point are as follows: In the generating stage of cyclone, the relative vorticity below 850 hPa increased and the convergence below 850 hPa and the divergence at 400 hPa are intensified by southward movement of jet core at 200 hPa. The heavy rainfall system seems to locate to the south of the exit region of upper-level jet streak; In the developing stage of cyclone, the relative vorticity below 850 hPa and the convergence near surface are further strengthened and upward vertical velocity between 850 hPa and 200 hPa is increased.

주차장 지역의 강우에 의한 Pb와 Zn의 유출 특성 (Runoff Characteristics of Heavy Metals from a Parking Lot by Rainfall)

  • 임종권;손현석;김성근;조경덕
    • 한국물환경학회지
    • /
    • 제26권6호
    • /
    • pp.926-933
    • /
    • 2010
  • Runoff from a parking lot can be highly contaminated nonpoint source due to the impermeability of rainwater. This study presented runoff characteristics of heavy metals especially Zn and Pb from a parking lot during total 17 rain events. Monitoring results showed the first flush phenomenon within 30 min was observed in all rain events, but the event mean concentration (EMC) did not clearly show the characteristics of runoff. The ranges of Pb and Zn was $4{\sim}201{\mu}g/L$ and $131{\sim}672{\mu}g/L$, respectively, and the runoff mass of Zn and Pb was highly to related with the flow rate, and runoff coefficient of rain. The runoff mass of Zn was greater than that of Pb in all events. The runoff mass of Pb was highly correlated with the amount of TSS, and TSS and DOC were was related with the mass of Zn. This result implies that Pb and Zn are mainly existed in the particulate form. The results can be used to as meaningful data in the management of nonpoint source, and in the management in the runoff catchment in the parking lot.

MBCAST: A Forecast Model for Marssonina Blotch of Apple in Korea

  • Kim, Hyo-suk;Jo, Jung-hee;Kang, Wee Soo;Do, Yun Su;Lee, Dong Hyuk;Ahn, Mun-Il;Park, Joo Hyeon;Park, Eun Woo
    • The Plant Pathology Journal
    • /
    • 제35권6호
    • /
    • pp.585-597
    • /
    • 2019
  • A disease forecast model for Marssonina blotch of apple was developed based on field observations on airborne spore catches, weather conditions, and disease incidence in 2013 and 2015. The model consisted of the airborne spore model (ASM) and the daily infection rate model (IRM). It was found that more than 80% of airborne spore catches for the experiment period was made during the spore liberation period (SLP), which is the period of days of a rain event plus the following 2 days. Of 13 rain-related weather variables, number of rainy days with rainfall ≥ 0.5 mm per day (Lday), maximum hourly rainfall (Pmax) and average daily maximum wind speed (Wavg) during a rain event were most appropriate in describing variations in airborne spore catches during SLP (Si) in 2013. The ASM, Ŝi = 30.280+5.860×Lday×Pmax-2.123×Lday×Pmax×Wavg was statistically significant and capable of predicting the amount of airborne spore catches during SLP in 2015. Assuming that airborne conidia liberated during SLP cause leaf infections resulting in symptom appearance after 21 days of incubation period, there was highly significant correlation between the estimated amount of airborne spore catches (Ŝi) and the daily infection rate (Ri). The IRM, ${\hat{R}}_i$ = 0.039+0.041×Ŝi, was statistically significant but was not able to predict the daily infection rate in 2015. No weather variables showed statistical significance in explaining variations of the daily infection rate in 2013.