• Title/Summary/Keyword: railway vehicles

Search Result 750, Processing Time 0.028 seconds

Characteristic Test of the Electro Mechanical Brake Actuator for Urban Railway Vehicles (도시철도용 전기기계식 제동장치의 특성시험)

  • Kim, Min Soo;Oh, Seh Chan;Kwon, Seok Jin
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.33 no.7
    • /
    • pp.535-540
    • /
    • 2016
  • The braking device in railway vehicles decelerates or stops the train by dissipating the thermal energy converted from kinetic energy into the air. Therefore, the brake system is crucial for safety. In this paper, we performed a study on an electromechanical brake actuator using an electrical motor as an alternative to pneumatic air cylinders to reduce the idle running time in braking, which subsequently increases braking distance, and to ensure reliable response characteristics. Especially, to analyze the response characteristics of the electromechanical brake actuator, we measure the delay time, response time and power consumption compared to the air cylinder. It is confirmed that the electromechanical brake actuator can reduce reaction time by 0.1 seconds (Braking Action) and 0.46 seconds (Brake Release) compared to the air cylinder.

Aerodynamic interaction between static vehicles and wind barriers on railway bridges exposed to crosswinds

  • Huoyue, Xiang;Yongle, Li;Bin, Wang
    • Wind and Structures
    • /
    • v.20 no.2
    • /
    • pp.237-247
    • /
    • 2015
  • Wind tunnel experiments are used to investigate the aerodynamic interactions between vehicles and wind barriers on a railway bridge. Wind barriers with four different heights (1.72 m, 2.05 m, 2.5 m and 2.95 m, full-scale) and three different porosities (0%, 30% and 40%) are studied to yield the aerodynamic coefficients of the vehicle and the wind barriers. The effects of the wind barriers on the aerodynamic coefficients of the vehicle are analyzed as well as the effects of the vehicle on the aerodynamic coefficients of the wind barriers. Finally, the relationship between the drag forces on the wind barriers and the aerodynamic coefficients of the vehicle are discussed. The results show that the wind barriers can significantly reduce the drag coefficients of the vehicle, but that porous wind barriers increase the lift forces on the vehicle. The windward vehicle will significantly reduce the drag coefficients of the porous wind barriers, but the windward and leeward vehicle will increase the drag coefficients of the solid wind barrier. The overturning moment coefficient is a linear function of the drag forces on the wind barriers if the full-scale height of the wind barriers $h{\leq}2.5m$ and the overturning moment coefficients $C_O{\geq}0$.

Modeling of Hybrid Railway Vehicles with Hydrogen Fuel-Cell/Battery using a Rule-Based Algorithm (규칙기반 알고리즘을 이용한 수소연료전지/배터리 하이브리드 철도차량 모델링)

  • Oh, Yoon-Gi;Han, Byeol;Oh, Yong-Kuk;Ryu, Joon-Hyoung;Lee, Kyo-Beum
    • Journal of IKEEE
    • /
    • v.24 no.2
    • /
    • pp.610-618
    • /
    • 2020
  • This paper presents the modeling of hybrid railway vehicles with hydrogen Fuel-Cells (FCs)/battery using a rule-based algorithm. The driving power of traction system is determined with the speed-torque curve by operation area of the electric machine and the electrical systems are modeled. The demanded power of electrical systems is set with the energy management system (EMS). The consumption of hydrogen is effectively managed with the subdivided operation region depending on the state of charge (SOC). The validity of the modeling is verified using MATLAB/Simulink.

Durability Evaluation of Gangway Connections for the High Speed Railway Vehicles (고속철도차량 갱웨이 통로연결막의 내구성 평가)

  • Kang, Gil-Hyun;Woo, Chang-Su;Kim, Chul-Su
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.15 no.8
    • /
    • pp.4796-4801
    • /
    • 2014
  • To increase the riding comfort and running stability of articulated type high speed railway vehicles(HSRV), it is important that the gangway connections for the passenger car satisfied fire safety, sound proof and durability under triaxial angular displacement (rolling/yawing/pitching) modes. On the other hand, a domestic test standard on the durability of the rubber components has not been determined. In this study, the fatigue life was predicted using the results of the nonlinear finite element analysis and the fatigue properties. Moreover, a fatigue rig test of the component was constructed to examine the durability.

A Study on Reduction of Energy and CO2 Emission by Using Regenerative Energy of Electric Vehicle (전동차 회생 에너지활용에 따른 에너지 및 CO2 절감 분석에 관한 연구)

  • Kim, Chul-Sub;An, Cheon-Heon;Lee, Byung-Song;Lee, Hi-Sung
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.24 no.9
    • /
    • pp.85-96
    • /
    • 2010
  • The recent environmental protection trend requires more strict energy saving, therefore every transportation system should reduce energy consumption to the minimum value. High-efficiency operation system, energy saving and $CO_2$ emissions shall be addressed as important issues in railway system. These issues are the most essential factors of railway, compared to major public transportation system. Recently, saving energy in the electric railway system has been studied. The efficient use of regenerated energy is considered to save energy. Namely, Using regenerative energy is that to store the energy generated during braking and discharge it again when a vehicle accelerates. Reusing energy stores and discharges energy, consequently enables a complete exchange of energy between vehicles, even if they are not braking and accelerating at precisely the same time, as is most frequently the case in everyday service. This paper analyzes effects of energy saving and $CO_2$-cut by using regenerative energy of electric vehicles.

Development and Application of New Evaluation System for Ride Comfort and Vibration on Railway Vehicles

  • Yoo Wan-Suk;Lee Chang-Hwan;Jeong Weui-Bong;Kim Sang-Hyun
    • Journal of Mechanical Science and Technology
    • /
    • v.19 no.7
    • /
    • pp.1469-1477
    • /
    • 2005
  • Vibrations related to ride comfort should be considered at the beginning of design stage. In general, ride comfort of human is mainly affected by vibration transmitted from the floor and seat. Also, vibration level is very important regarding with running safety on freight wagon. To ensure ride comfort for passenger coach and vibration level for freight wagon, tests had been repeated by different test procedures with several equipments. With different measuring and evaluations for these results, it took much time to evaluate test results. In this paper, a new evaluation procedure was developed combining several software for ride comfort and vibration level test on railway vehicles. In addition, this developed system is capable of ride comfort test and vibration test by a single integrated system that is capable of immediate reporting the test result. With this developed system, the comfort in a passenger coach and the vibration in a freight car were evaluated. And the simulation results from the proposed system are verified by a field test.

A Study for Interior Noise Contribution of Support Material used in Railway Vehicle Floor (철도차량 부유상구조의 Floor support 재질이 차량 실내소음에 미치는 영향에 관한 연구)

  • Son, Byoung-Gu;Kim, Jong-Nyeun;Woo, Kwan-Je
    • Proceedings of the KSR Conference
    • /
    • 2008.11b
    • /
    • pp.1776-1781
    • /
    • 2008
  • To reduce interior noise of running vehicles, a floating floor construction has been widely used in recent railway industry. Among the key factors of the floating floor design, dynamic stiffness is of most important in acoustical point of view. Sometimes hard rubber type supports have often been selected due to the other design constraints such as heavy load condition, durability of rubber element and its cost etc., even though it seems like the softer support, the better isolation of noise and vibration. In this paper two representative floor supports have been considered to evaluate their effectiveness in interior noise contribution: one is a soft rubber and another is a relatively hard one. From the measured dynamic stiffness of the specimens, equivalent stiffness of actual floating floor has been derived to use in the analytical models. Calculated air-borne and structure-borne noise insulation properties of the floating floors have been compared with experiments in prototype car. In full car model interior noise levels of running vehicles have been predicted to quantify the effectiveness of the two different floating support materials and verified through the measured inside noise levels of actual train as well. By comparison with difference of running noise levels two materials for floor support can be investigated quantitatively so that it could be applied in floating floor design.

  • PDF

Development of a Time-Based Railway Crossing Control System and Evaluation (철도건널목 정시간 제어방식 개발 밑 효과분석에 관한 연구)

  • Park Dongjoo;Oh Ju-Taek;Lee Sun-Ha;Jung Chun-Hee;Shin Seong-Hoon
    • Journal of the Korean Society for Railway
    • /
    • v.8 no.2
    • /
    • pp.145-154
    • /
    • 2005
  • Traffic accidents at highway-rail crossing result in larger social and economic damages than the accidents at the typical highway intersections. The traditional control and warning systems of the highway-rail crossing have limitations in that 1) they do not recognize the differences of the trains' arrival times because they rely on the distance-based control system, rather than the time-based one, and 2) thereby they usually cause longer delays of vehicles and pedestrians at the highway-rail crossings. The objective of this study is to develop a time-based railroad crossing control system which takes into account the speed and expected arrival time of trains. using the spot speeds and acceleration rates of trains measured at three points, the developed system was found to be able to accurately estimate the arrival time of train. VISSIM simulation package was utilized to compare system effect of the developed time-based railroad crossing control system with that of the conventional distance-based one. It was found that the developed time-based railroad crossing control system reduced the average travel time, maximum delay length, average delay time, and average number of stop-experienced vehicles as much as 7.0$\%$, 75.6$\%$, 12.7$\%$, and 60.0$\%$, respectively, compared with those from the conventional distance-based one.