• Title/Summary/Keyword: railway tunnels

Search Result 220, Processing Time 0.02 seconds

Evaluation of Railway Line Segment Deterioration Using AHP and DEA (AHP와 DEA를 활용한 철도선로구간 노후도 평가)

  • Kim, Seongho;Choi, Chan-Yong;Na, Hee-Seung
    • Journal of the Korean Society for Railway
    • /
    • v.16 no.2
    • /
    • pp.117-121
    • /
    • 2013
  • Railway line segment deterioration can be affected by rail tracks, subgrades, bridges, tunnels, and line shapes. In this paper, an evaluation method is presented for the railway line segment deterioration using the analytic hierarchy process (AHP) and data envelopment analysis (DEA). The importance weights can be assessed systematically for component facilities from numerous experts using AHP. The importance weights provided by experts may differ according to each expert; however, the DEA enables the evaluation of railway line segment deterioration that reflects the variety of expert opinions using these importance weights.

A study on the Changes of TGV & ICE Series' Nose Shape (TGV & ICE Series의 전두부 디자인 형상변천에 관한 연구)

  • Lee, Hee-Yup;Hong, Suk-Ki;Na, Hee-Seung
    • Proceedings of the KSR Conference
    • /
    • 2007.11a
    • /
    • pp.1835-1842
    • /
    • 2007
  • The purpose of this paper describes the changes of TGV & ICE series' nose shape by increasing train speed and according to the periodical characteristics. As the speed increases, the length of the nose shape trends to lengthen longer. But the nose shape length does not increase as speed improves by optimized nose shape to reduce aerodynamic drag and micro-pressure wave in tunnels. TGV & ICE series' nose shape can be classified into Advanced paraboloid type, Shape-nosed type, Organic double-edged type and Flat-nosed type by the advance research(the changes of Shinkansen vehicle' nose shape) of high speed railway. Because it trends to be diversified and characterized more and more. This paper analyzed and introduced as TGV & ICE series' nose shape by top 2 nation (Germany, France) and high speed railway in the past years(1980-2007) for their railway design trends by new positioning(Advance research).

  • PDF

Application of Probabilistic Technique for the Development of Fire Accident Scenarios in Railway Tunnel (확률론적 기법을 활용한 철도터널의 화재사고 시나리오의 구성)

  • 곽상록;홍선호;왕종배;조연옥
    • Journal of the Korean Society for Railway
    • /
    • v.7 no.4
    • /
    • pp.302-306
    • /
    • 2004
  • Many long railway tunnels without emergency evacuation system or ventilation system are under construction or in-use in Korea. In the case of tunnel-fire, many fatalities are occur in current condition. Current safety level is estimated in this study, for the efficient investment on safety. But so many uncertainties in major input parameters make the safety estimation difficult. In this study, probabilistic techniques are applied for the consideration of uncertainties in major input parameters. As results of this study, accident scenarios and survival ratio under tunnel fire accident are determined for various conditions.

Integrative Modeling of Wireless RF Links for Train-to-Wayside Communication in Railway Tunnel

  • Pu, Shi;Hao, Jian-Hong
    • Journal of Korea Society of Industrial Information Systems
    • /
    • v.17 no.2
    • /
    • pp.19-27
    • /
    • 2012
  • In railway tunnel environment, the reliability of a high-data-rate and real-time train-to-wayside communication should be maintained especially when high-speed train moves along the track. In China and Europe, the communication frequency around 900 MHz is widely used for railway applications. At this carrier frequency band, both of the solutions based on continuously laid leaky coaxial cable (LCX) and discretely installed base-station antennas (BSAs), are applied in tunnel radio coverage. Many available works have concentrated on the radio-wave propagation in tunnels by different kinds of prediction models. Most of them solve this problem as natural propagation in a relatively large hollow waveguide, by neglecting the transmitting/receiving (Tx/Rx) components. However, within such confined areas like railway tunnels especially loaded with train, the complex communication environment becomes an important factor that would affect the quality of the signal transmission. This paper will apply a full-wave numerical method to this case, for considering the BSA or LCX, train antennas and their interacted environments, such as the locomotive body, overhead line for power supply, locomotive pantograph, steel rails, ballastless track, tunnel walls, etc.. Involving finite-difference time-domain (FDTD) method and uni-axial anisotropic perfectly matched layer (UPML) technique, the entire wireless RF downlinks of BSA and LCX to tunnel space to train antenna are precisely modeled (so-called integrative modeling technique, IMT). When exciting the BSA and LCX separately, the field distributions of some cross-sections in a rectangular tunnel are presented. It can be found that the influence of the locomotive body and other tunnel environments is very significant. The field coverage on the locomotive roof plane where the train antennas mounted, seems more homogenous when the side-laying position of the BSA or LCX is much higher. Also, much smoother field coverage solution is achieved by choosing LCX for its characteristic of more homogenous electromagnetic wave radiation.

Ground-born vibration at multileveled train tunnel crossing

  • Moon, Hoon-Ki;Kim, Kang-Hyun;Kim, Ho-Jong;Shin, Jong-Ho
    • Structural Engineering and Mechanics
    • /
    • v.73 no.4
    • /
    • pp.367-379
    • /
    • 2020
  • In recent railway projects where the railway connects between cities, newly planned tunnels are often located close to, or beneath an existing tunnel. Many claims and petitions have voiced public concern about the vibration and noise resulting from the situation. Vibrations and noises are engineering issues as well as environmental problems, and have become more important as people have become more concerned with their the quality of life. However, it is unlikely that the effects of vibration in situations where trains simultaneously pass a multileveled tunnel crossing have been appropriately considered in the phase of planning and design. This study investigates the superposition characteristic of ground-born vibrations from a multileveled tunnel crossing. The results from model tests and numerical analysis show that the ground-born vibration can be amplified by a maximum of about 30% compared to that resulting from the existing single tunnel. Numerical parametric study has also shown that the vibration amplification effect increases as the ground stiffness, the tunnel depth, and the distance between tunnels decrease.

Experimental Study of the Internal/external Pressure Variation of TTX Travelling through a Tunnel (한국형 틸팅차량의 터널 주행시 실내/외 압력변화에 대한 실험적 연구)

  • Yun, Su-Hwan;Kwak, Min-Ho;Lee, Dong-Ho;Kwon, Hyeok-Bin;Ko, Tae-Hwan
    • Journal of the Korean Society for Railway
    • /
    • v.12 no.2
    • /
    • pp.309-314
    • /
    • 2009
  • When a train enters into a tunnel, a compression wave is generated by a front nose and a expansion wave is generated by a rear tail respectively. The interaction between pressure waves and the train makes the internal and external pressure of the train change dramatically. In this paper, we had measured the internal and external pressure variations of TTX and analyzed the pressure variations as the tunnel length. Also, the rate of internal pressure variations were investigated with the current airtight condition of TTX. In short tunnels, the internal and external pressure variation were not large because the superposition of pressure waves was not happened. In long tunnels, however, the rapid and large pressure variations were shown because of the superpositions between the same sort of pressure waves, such as expansion wave and expansion wave or compression wave and compression wave. In specific length tunnels, the pressure variation and the pressure variation rates were largely lessened because the compression wave and expansion wave were superposed.

Concrete Lining Behaviors of Subway Tunnels according to Temperature Variations (온도변화에 따른 지하철 터널의 콘크리트 라이닝 거동)

  • Yoo, Ji-Hyeung;Lee, Seung-Won;Kim, Dae-Sung
    • Journal of the Korean Society for Railway
    • /
    • v.17 no.6
    • /
    • pp.410-414
    • /
    • 2014
  • In this study, the behavior of urban subway tunnels is measured using instrumentation sensors installed in the lining concrete inside subway tunnels in order to analyze their behavior according to temperature variations. It is observed that the stresses of the concrete lining, tunnel convergence, and cracks change according to the temperature variations. However, the crack deformation differs depending on the size and status of the crack. In addition, this study proposes a correction formula for the lining stress and tunnel convergence through numerical analyses of the concrete lining according to the temperature variations. The results of this research can be used in the tunnel maintenance considering the tunnel behavior depending on the temperature variations in the tunnel.

A study on the moving picture transmission method between the accident sites and control center (사고현장과 사령실간 화상전송기술에 관한 연구)

  • 장석각;조봉관
    • Proceedings of the KSR Conference
    • /
    • 2002.10a
    • /
    • pp.484-489
    • /
    • 2002
  • Whenever the accidents occur in the railway areas, their prompt recovery is very important. The individual way has been used to resolve these accidents by direct visiting the site and reporting to others who cares for these cases. As a result, we are planning to operate the MTS (Moving picture Transmission System) for a timely information's transmission to the related peoples in the central control center by transforming the picture information on the accident-site to the digital information. The proposed system is not a transmission system using exclusive lines, but utilizing the existing railway computer network. We construct a network server device so that a dispatcher can easily connect with the server through the railway intranet. In some railway environments such as disturbed field situations and geographical condition(in tunnels and bridges, etc) building up the wired network is difficult. Solving this problem, we reviewed the wireless network. Finally we proposed the mixed wireless network that is able to cover the wired network. We then installed and tested the wired network and wireless network respectively in wayside of a railway field. Through the testing, we identified many detailed matters for some network construction approaches to the control room and many field device-connecting schemes. This research will contribute to minimize the number of staff dispatched to a disturbed field, decrease the accident recovery time and improve the quality of service to the passenger.

  • PDF

Analysis on dynamic numerical model of subsea railway tunnel considering various ground and seismic conditions (다양한 지반 및 지진하중 조건을 고려한 해저철도 터널의 동적 수치모델 분석)

  • Changwon Kwak;Jeongjun Park;Mintaek Yoo
    • Journal of Korean Tunnelling and Underground Space Association
    • /
    • v.25 no.6
    • /
    • pp.583-603
    • /
    • 2023
  • Recently, the advancement of mechanical tunnel boring machine (TBM) technology and the characteristics of subsea railway tunnels subjected to hydrostatic pressure have led to the widespread application of shield TBM methods in the design and construction of subsea railway tunnels. Subsea railway tunnels are exposed in a constant pore water pressure and are influenced by the amplification of seismic waves during earthquake. In particular, seismic loads acting on subsea railway tunnels under various ground conditions such as soft ground, soft soil-rock composite ground, and fractured zones can cause significant changes in tunnel displacement and stress, thereby affecting tunnel safety. Additionally, the dynamic response of the ground and tunnel varies based on seismic load parameters such as frequency characteristics, seismic waveform, and peak acceleration, adding complexity to the behavior of the ground-tunnel structure system. In this study, a finite difference method is employed to model the entire ground-tunnel structure system, considering hydrostatic pressure, for the investigation of dynamic behavior of subsea railway tunnel during earthquake. Since the key factors influencing the dynamic behavior during seismic events are ground conditions and seismic waves, six analysis cases are established based on virtual ground conditions: Case-1 with weathered soil, Case-2 with hard rock, Case-3 with a composite ground of soil and hard rock in the tunnel longitudinal direction, Case-4 with the tunnel passing through a narrow fault zone, Case-5 with a composite ground of soft soil and hard rock in the tunnel longitudinal direction, and Case-6 with the tunnel passing through a wide fractured zone. As a result, horizontal displacements due to earthquakes tend to increase with an increase in ground stiffness, however, the displacements tend to be restrained due to the confining effects of the ground and the rigid shield segments. On the contrary, peak compressive stress of segment significantly increases with weaker ground stiffness and the effects of displacement restrain contribute the increase of peak compressive stress of segment.

Analysis on Downtime element of Gripper TBM based on field data (현장 데이터 분석을 통한 Gripper TBM의 Downtime 요소 분석)

  • Park, Jinsoo;Song, Ki-Il
    • Journal of Korean Tunnelling and Underground Space Association
    • /
    • v.23 no.6
    • /
    • pp.393-402
    • /
    • 2021
  • The first TBM introduced in Korea was the gripper TBM, which was applied to the Gudeok Waterway Tunnel in 1985. In the initial stage of the introduction of the gripper TBM, many applications were mainly focused on waterway tunnels (Tunnel Mechanized Construction Design, 2008). Currently, the construction range of gripper TBM in Korea is widely applied to not only waterway tunnels, but also subways, railway tunnels, and TBM+NATM expansion. Overseas, gripper TBM is generally applied, and even when NATM tunnel is applied, it is applied as an exploration tunnel because of the excellent advance rate of gripper TBM and used as an evacuation tunnel after completion. Due to the fast excavation speed, the application of the gripper TBM in the rock section of weathered rock or higher can minimize the environmental and civil complaints caused by creating a large number of work areas when planning long tunnels or mountain tunnels. In this study, the work process of the general gripper TBM was analyzed by analyzing the construction cycle and the gripper TBM with a diameter of 2.6~5.0 m, which was applied the most in Korea. Downtime was investigated and analyzed.