• Title/Summary/Keyword: railway slab track

Search Result 195, Processing Time 0.031 seconds

Vibration Analysis Method for Railway Structure with Floating Slab (방진궤도가 부설된 역사의 진동해석 기법)

  • 양신추;김태욱;강윤석
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2003.05a
    • /
    • pp.561-566
    • /
    • 2003
  • In this paper, a numerical method for evaluating the efficiency of vibration reduction of substructure under floating slab track is developed for optimal design of floating slab track. The equation of motion for train and track interaction system is derived by applying compatibility condition at the contact points between wheels and rails. The train is modelled by 3-masses system and the track by continuous support beam system. Numerical analyses are carried out to investigate the effects of train speed, stiffness and damping of slab-pad, and track irregularity upon vibration reduction in substructure under the track.

  • PDF

A comprehensively overall track-bridge interaction study on multi-span simply supported beam bridges with longitudinal continuous ballastless slab track

  • Su, Miao;Yang, Yiyun;Pan, Rensheng
    • Structural Engineering and Mechanics
    • /
    • v.78 no.2
    • /
    • pp.163-174
    • /
    • 2021
  • Track-bridge interaction has become an essential part in the design of bridges and rails in terms of modern railways. As a unique ballastless slab track, the longitudinal continuous slab track (LCST) or referred to as the China railway track system Type-II (CRTS II) slab track, demonstrates a complex force mechanism. Therefore, a comprehensive track-bridge interaction study between multi-span simply supported beam bridges and the LCST is presented in this work. In specific, we have developed an integrated finite element model to investigate the overall interaction effects of the LCST-bridge system subjected to the actions of temperature changes, traffic loads, and braking forces. In that place, the deformation patterns of the track and bridge, and the distributions of longitudinal forces and the interfacial shear stress are studied. Our results show that the additional rail stress has been reduced under various loads and the rail's deformation has become much smoother after the transition of the two continuous structural layers of the LCST. However, the influence of the temperature difference of bridges is significant and cannot be ignored as this action can bend the bridge like the traffic load. The uniform temperature change causes the tensile stress of the concrete track structure and further induce cracks in them. Additionally, the influences of the friction coefficient of the sliding layer and the interfacial bond characteristics on the LCST's performance are discussed. The systematic study presented in this work may have some potential impacts on the understanding of the overall mechanical behavior of the LCST-bridge system.

Development of Construction Technology for Noise Abatement System on Urban Railway (도시철도 소음저감시스템 시공기술 개발)

  • Ryu, Jae-Kwang;Min, Jun-Ho;Kim, Hyo-San;Lee, Dal-Jae
    • Proceedings of the KSR Conference
    • /
    • 2011.10a
    • /
    • pp.2860-2865
    • /
    • 2011
  • Recently, the number of passengers using urban railway has been increased by reasons of the reductions of car use due to high fuel prices and the enlightenment about the environment. Above all, the noise and the vibration coming from the friction between the wheel and the rail of trains in operation which is not only a factor that hinders riding comforts but causes civil complaints. Furthermore, the noise has become social issues from tightening the relevant regulations by the government since January 2010. Although ballasted tracks were constructed on urban railways at the time of opening, they have been changed into slab tracks because slab tracks require much less maintenance. However, in view of sound absorptivity of track, slab tracks have 10 times less capability than ballasted tracks(ballasted track : 0.5~0.6/slab tracks : 0.06) results more noise than that of ballasted tracks as much as 3dB(A) since slab tracks emit more reflection noise. Therefore, in order to minimize reflection noise on slab tracks, noise abatement system has been developed as a national R&D program to apply on-site test. It is assumed that the construction technology developed in this study can be used not only as basic data for the on-site test for the noise reduction in urban railway but as an efficient construction method.

  • PDF

Numerical Investigation on Vibrations due to Railway Loads on Slab Tacks (슬래브 궤도에서 열차하중으로 인한 진동문제의 수치 해석적 연구)

  • Kang Bo-Soon
    • Proceedings of the KSR Conference
    • /
    • 2003.05a
    • /
    • pp.91-96
    • /
    • 2003
  • In this report, numerical investigations have demonstrated, that the displacement underneath a moving loa야ng reach a maximum value, if the speed of the load is equal to propagation velocity of the maximum wave. The load speed for which the maximum displacement occurs is called critical speed. The critical speed divides the velocities in a subcritical and a super-critical region. By means of calculations the dynamic behaviour of the slab track-soil is investigated. For concrete slab track dynamic wheel load are given in dependence of relevant excitation mechanism and speed of the train. These loads can be used for the dimensioning of the track as well as for the prognosis of the vibrations at the track and the surrounding soil.

  • PDF

3- D Analysis of Concrete Slab Track System (콘크리트 슬래브 궤도의 3차원 거동해석)

  • Kim, Jeong-Il;Jang, Seung-Yup
    • Proceedings of the KSR Conference
    • /
    • 2004.06a
    • /
    • pp.955-960
    • /
    • 2004
  • In this study, three dimensional FE analysis of concrete slab track has been performed in order to develop the realistic design of precast concrete slab track. The precast slab track system including the precast concrete slab panel and the grout layer is modeled using the three dimensional solid element with crack softening effect. The input load is computed from the one dimensional beam element model constituting the rail and several discrete springs. To investigate the effect of the longitudinal connection of slab panels, two different systems-continuous and discrete systems - are modeled. The analytical results show that the stresses of both the slab panel and the grout layer are in the range of linear elastic, and, at the interface between two adjacent panels, the primary stresses of the grout layer of the discrete system are higher than those of the continuous system. However, The overall stress levels of the grout layer are very low relative to the strength of th grout.

  • PDF

Design of floating Slab according to Dynamic Load (동하중을 고려한 플로팅궤도 슬래브 설계)

  • Park, Sung-Jae;Ma, Chang-Nam;Park, Myung-Gyun;Lee, Du-Hwa;Jo, Su-Ik
    • Proceedings of the KSR Conference
    • /
    • 2010.06a
    • /
    • pp.268-272
    • /
    • 2010
  • Recently the construction of railway sections passing the central area of cities and stations under railway lines are increasing, and then it is urgently required to take the countermeasures against the railway vibration and the second-phase noise radiated from it. The most efficient countermeasure, out of technologies developed up to now, is the floating slab track which is the track system isolated from the sub-structure by springs. In other countries, the source technologies for anti-vibration design and vibration isolator - one of key components - have been developed and many installation experiences have been accumulated. However, in Korea, since the system design technology and technologies for key components are not yet developed, the foreign system are being introduced without any adjustment, and the key component, vibration isolator, depends on imports. In this study, floating slab was divided into three spans, $k_{dynamic}$ use by examining reactions and member forces was to ensure safety.

  • PDF

Calculation method and application of natural frequency of integrated model considering track-beam-bearing-pier-pile cap-soil

  • Yulin Feng;Yaoyao Meng;Wenjie Guo;Lizhong Jiang;Wangbao Zhou
    • Steel and Composite Structures
    • /
    • v.49 no.1
    • /
    • pp.81-89
    • /
    • 2023
  • A simplified calculation method of natural vibration characteristics of high-speed railway multi-span bridge-longitudinal ballastless track system is proposed. The rail, track slab, base slab, main beam, bearing, pier, cap and pile foundation are taken into account, and the multi-span longitudinal ballastless track-beam-bearing-pier-cap-pile foundation integrated model (MBTIM) is established. The energy equation of each component of the MBTIM based on Timoshenko beam theory is constructed. Using the improved Fourier series, and the Rayleigh-Ritz method and Hamilton principle are combined to obtain the extremum of the total energy function. The simplified calculation formula of the natural vibration frequency of the MBTIM under the influence of vertical and longitudinal vibration is derived and verified by numerical methods. The influence law of the natural vibration frequency of the MBTIM is analyzed considering and not considering the participation of each component of the MBTIM, the damage of the track interlayer component and the stiffness change of each layer component. The results show that the error between the calculation results of the formula and the numerical method in this paper is less than 3%, which verifies the correctness of the method in this paper. The high-order frequency of the MBTIM is significantly affected considering the track, bridge pier, pile soil and pile cap, while considering the influence of pile cap on the low-order and high-order frequency of the MBTIM is large. The influence of component damage such as void beneath slab, mortar debonding and fastener failure on each order frequency of the MBTIM is basically the same, and the influence of component damage less than 10m on the first fourteen order frequency of the MBTIM is small. The bending stiffness of track slab and rail has no obvious influence on the natural frequency of the MBTIM, and the bending stiffness of main beam has influence on the natural frequency of the MBTIM. The bending stiffness of pier and base slab only has obvious influence on the high-order frequency of the MBTIM. The natural vibration characteristics of the MBTIM play an important guiding role in the safety analysis of high-speed train running, the damage detection of track-bridge structure and the seismic design of railway bridge.

A Study on characteristics of vibration of a floating slab track according to change of stiffness of track (궤도하부강성 변화에 따른 방진슬라브 궤도의 진동특성 연구)

  • 강윤석;양신추;오지택
    • Proceedings of the KSR Conference
    • /
    • 1998.05a
    • /
    • pp.572-579
    • /
    • 1998
  • In this paper, an analytical model for analyzing the interaction between train and floating slab track is presented. Train is modelled by 4-lumped masses system which are composed of a carbody supported by secondary suspension, a bogie frame supported by primary suspension, and two wheelsets supported by nonlinear Hertzian springs. In the track model, rail is considered to have a distributed mass and to be supported discretely at sleepers above ballast on slab. The slab supported by discrete isolators put on fixed floor is modelled by finite beam elements. Numerical analyses are carried out to examine anti-vibration effect of the GERB slab track which is same type laid in Puchon station on the subway No. 7 Line.

  • PDF

Bond-slip constitutive model of concrete to cement-asphalt mortar interface for slab track structure

  • Su, Miao;Dai, Gonglian;Peng, Hui
    • Structural Engineering and Mechanics
    • /
    • v.74 no.5
    • /
    • pp.589-600
    • /
    • 2020
  • The bonding interface of the concrete slab track and cement-asphalt mortar layer plays an important role in transferring load and restraining the track slab's deformation for slab track structures without concrete bollards in high-speed railway. However, the interfacial bond-slip behavior is seldom considered in the structural analysis; no credible constitutive model has been presented until now. Elaborating the field tests of concrete to cement-asphalt mortar interface subjected to longitudinal and transverse shear loads, this paper revealed its bond capacity and failure characteristics. Interfacial fractures all happen on the contact surface of the concrete track slab and mortar-layer in the experiments. Aiming at this failure mechanism, an interfacial mechanical model that employed the bilinear local bond-slip law was established. Then, the interfacial shear stresses of different loading stages and the load-displacement response were derived. By ensuring that the theoretical load-displacement curve is consistent with the experiment result, an interfacial bond-slip constitutive model including its the corresponding parameters was proposed in this paper. Additionally, a finite element model was used to validate this constitutive model further. The constitutive model presented in this paper can be used to describe the real interfacial bonding effect of slab track structures with similar materials under shear loads.

Unsupported Sleepers in Transition Zone between Concrete Slab Track and Ballasted Track : Phenomena and Its Countermeasures (고속철도 콘크리트궤도-자갈도상궤도 완충구간의 뜬침목 발생 현상과 대책)

  • Jang, Seung-Yup;Im, Oh-Jin;Yang, Sin-Chu
    • Proceedings of the KSR Conference
    • /
    • 2007.11a
    • /
    • pp.1126-1131
    • /
    • 2007
  • In 1st Phase Kyeong-Bu High-Speed Line, to lessen the impact in the transition zone between concrete slab track(in tunnel) and ballasted track(on embankment), the ballast bonding method has been adopted. However, in this area, in the beginning of the operation, unsupported sleepers are found, and the track deterioration and damage of concrete sleepers have occurred. In this paper, the status and causes of unsupported sleepers are discussed and several repair measures are proposed.

  • PDF