• Title/Summary/Keyword: railway ballast

Search Result 282, Processing Time 0.023 seconds

Track Longitudinal Irregularities at Bridge Deck Expansion Joint with ZLR(Zero Longitudinal Restraint) (활동체결장치가 설치된 교량상판 신축이음부에서의 궤도고저틀림에 미치는 영향)

  • Eom, Jong-Woo;Kim, Si-Chul;Kim, In-Jae
    • Proceedings of the KSR Conference
    • /
    • 2007.11a
    • /
    • pp.1093-1098
    • /
    • 2007
  • In designing the high-speed railroad track, it is important to utilize appropriate track components to maintain uniform stiffness and ensure track alignment within the tolerance set for that system. In this regard, continuous welded rails (CWRs) were introduced to the Korean railways. Yet the installation of CWRs can result in an adverse impact due to the track/structure interaction on bridge sections yielding variations in the stiffness at the expansion joints. It may also impose additional axial force, generate excessive stress or deflection on track, and loosen the ballast at the ends as a bridge deck contracts or expands owing to a thermally-induced dynamic response. The risk is even greater in a long bridge deck, resulting in track longitudinal irregularities, deteriorating passenger's comfort, and increasing maintenance efforts. This study evaluates the performance of ZLR and their impact on track longitudinal irregularities through the track measuring results on a test section installed the ZLR in order to minimize the thermally-induced responses and the maintenance efforts for the high speed railway bridges.

  • PDF

A Study on Behavior of Concrete Slab Track subjected to High Speed Train Loads (고속열차하중을 받는 슬래브궤도의 동적거동에 관한 연구)

  • 조병완;김영진;허민회;정태호
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2000.04a
    • /
    • pp.493-598
    • /
    • 2000
  • In the rail facilities, the rail track consists of rail, tie, fastening, accessories and bed. The rail track is largely divided into Ballast Bed Track (BBT) and Concrete Bed Track (CBT) according to the type of bed. In this thesis, among Concrete Bed Track, slab track, which is used for the Japanese high speed railway, is a target of this study. Dynamic analysis by using finite element method are performed where moving train load is periodic function. Then through parametric study, some conclusions are obtained as follows. Cement Asphalt Mortar (CAM) affects contrary mechanical behavior to rail and slab greatly. Therefore, change of CAM spring coefficient should be handled with care. For slab thickness, thin slab is more profitable to reduction of vibration of rail than thick one but mechanical capacity of slab is deteriorated. Improved structural type is proposed, then structural analysis is performed for this one. This type is effective to reduction of vibration of railway system.

  • PDF

Dynamics Responses of Railway Bridges for Track Irregularities (궤도의 불규칙성을 고려한 철도교량의 동적응답분석)

  • 박흥석;이용선;이상호;김상효
    • Computational Structural Engineering
    • /
    • v.11 no.3
    • /
    • pp.253-262
    • /
    • 1998
  • 본 연구에서는 경부고속철도의 주요 교량형식인 PSC 박스교량을 3차원 뼈대요소를 사용하여 모형화하였으며, 궤도불규칙성의 형상은 지수 스펙트럴 밀도함수를 사용하여 생성시켰다. 경부고속철도차량(K-TGV)중 동력차는 17자유도의 3차원 주행열차로 모형화하였고, 이러한 교량, 궤도불규칙성 및 차량 모형을 이용하여 교량과 차량의 상호작용을 해석할 수 있는 프로그램을 개발하였다. 동적해석을 위한 교량과 차량의 운동방정식은 Lagrange 방정식을 사용하여 유도하였으며, 운동방정식의 수치해석에는 Newmark-β법을 사용하였다. 개발된 프로그램을 이용하여 동력차의 주행에 의한 교량의 시간이력곡선을 구하였으며, 궤도불규칙성의 영향을 분석하였다. 또한 도상의 유무에 따른 교량동적거동의 특성과 함께 열하중의 편심의 영향도 분석하였다.

  • PDF

A study on determining the minimum vertical spring stiffness of track pad considering running safety. (열차주행안전을 고려한 궤도패드의 최소 수직 스프링계수 결정에 관한 연구)

  • Kim Jeong-ll;Yang SinChu;Kim Yun-Tae
    • Proceedings of the KSR Conference
    • /
    • 2004.10a
    • /
    • pp.842-847
    • /
    • 2004
  • This study presents the minimum spring stiffness of resilient track pad considering the safety of running train. A nonlinear static 3-D finite element is used for the modeling of railway superstructure, especially for the reflection of nonlinear resistance of rail fastening system. Moreover, ballast is considered as an elastic foundation. As the input load, eccentric wheel and lateral force are used and they are derived from ' Lateral-force/Wheel-load Estimation Equations '. Analysis results are compared with following two values : allowable lateral displacement of rail head (derived from the geometrical derailment evaluation of wheel/rail) and operation standard value (derived from the field test results of track).

  • PDF

Dynamic Behavior of a Open-Deck Steel Bridge considering Surface Irregularities of Rail Joints (레일이음매에 의한 주행면 불규칙성을 고려한 판형교의 동적거동)

  • Kim Sung-Il;Kim Hyun-Min;Oh Ji-Taek
    • Proceedings of the KSR Conference
    • /
    • 2004.10a
    • /
    • pp.1028-1033
    • /
    • 2004
  • The open deck steel bridge is the most common type in railway bridges. Steel I-shaped girders are connected with sleepers directly without ballast and moving train loads are transmitted directly to the girder, so this bridge has weak characteristics on impact. Therefore, considerable accelerations can cause unsatisfactory dynamic behavior of the open deck steel bridge. Especially, Impact created at rail joints can increase the dynamic response of the bridge and this phenomenon would be injurious to passenger comfort. In the present study, dynamic behavior of the open deck steel bridge which has a rail joint is estimated through experimental studies and bridge-train interaction analysis considering surface irregularities by rail joints.

  • PDF

Prediction of Life Time of Rail Rubber Pad using Reliability Analysis Method

  • Park, Dae-Geun
    • International Journal of Railway
    • /
    • v.6 no.1
    • /
    • pp.13-25
    • /
    • 2013
  • Railpad prevents damage of the tie and ballast by reducing the impact and high frequency vibration, which occurs when a vehicle load transfers to a tie. But elasticity of the railpad can decrease under vehicle load and over usable period. If that happens, railpad will become stiffer. Increase in stiffness of the railpad also translates into a rise in track maintenance cost because it accelerates the damage of the track. In this study, accelerated heat ageing test was performed to predict an expectable lifetime of the railpad. As a result, it was predicted to be about sixteen years at $25^{\circ}C$ that life time of railpad using NR rubber from Arrhenius relationship. Also, it was predicted to be about thirty-two days at $100^{\circ}C$. At this time, a standard rate of thickness change is approximately within 12%.

Parametric Study of Thermal Stability on Continuous Welded Rail

  • Choi, Dong-Ho;Na, Ho-Sung
    • International Journal of Railway
    • /
    • v.3 no.4
    • /
    • pp.126-133
    • /
    • 2010
  • The thermal buckling analysis of curved continuous welded rail (CWR) is studied for the lateral buckling prevention. This study includes a thermal buckling theory which accounts for both thermal and vehicle loading effects in the evaluation of track stability. The parameters include rail size, track lateral resistance, track longitudinal and torsional stiffnesses, initial misalignment amplitude and wavelength, track curvature, tie-ballast friction coefficient and truck center spacing. Parametric studies are performed to evaluate the effects of the individual parameters on the upper and lower critical buckling temperatures. The results show that the upper critical buckling temperature is highly affected by the uplift due to vehicle loads. This study provides a guideline for the improvement of stability for dynamic buckling in curved CWR track.

  • PDF

Analysis on Factors Affecting the Acceleration of the Ballasted Track in Kyong-Bu High Speed Line

  • Kim, Man-Cheol
    • International Journal of Railway
    • /
    • v.2 no.4
    • /
    • pp.152-163
    • /
    • 2009
  • In this paper, the correlation between the accelerations measured at the track components and the parameters affecting the acceleration is analyzed. To do it, the accelerations of each track component such as rails, sleepers and ballast are measured in Kyong-Bu high-speed Line. The RMS values of the measured accelerations are calculated and the pad stiffness, the longitudinal irregularity, running velocity and the corrugation, are considered as the parameters affecting the acceleration. By using the linear regression, the correlation coefficients are calculated to analyze the relationship between the acceleration characteristics and the parameters. Also, the 1/3 Octave analysis is calculated to analyze the dominant frequency band of the accelerations of the track components.

  • PDF

A Method for the Analysis of Train/Slab-Track Interaction on Settled Roadbed (슬래브궤도 노반침하구간 차량/궤도 상호작용 해석기법 개발)

  • Yang, Sin-Chu;Hong, Chul-Kee
    • Journal of the Korean Society for Railway
    • /
    • v.10 no.3 s.40
    • /
    • pp.296-305
    • /
    • 2007
  • A numerical method for the analysis of train/slab-track interaction on the settled roadbed is developed based on the already developed analysis method of train/ballast-track interaction. The concrete slabs composed of the upper track concrete layer and the lower hydraulic bonded layer are modelled by a equivalent beam. The supporting stiffness of roadbed is evaluated with the modified boussinesq method suggested by Eisenmann. The track irregularity and the gap between slab and roadbed induced by settlement of roadbed are calculated by the effective method newly presented in this study. The validation of the developed method is investigated by a numerical example. The effects of train speed on train and slab track on the settled roadbed with sinusoidal shape of wave length 20m and amplitude 20mm are reviewed.

Study on the Appropriateness of Track Maintenance Works through the Evaluation of Trackbed Conditions (도상 및 노반상태 평가를 통한 궤도유지보수작업의 적정성 연구)

  • Kim, Dae-Sang;Kwon, Soon-Sup;Lee, Su-Hyung;Hwang, Seon-Keun;Park, Tae-Soon
    • Journal of the Korean Society for Railway
    • /
    • v.11 no.3
    • /
    • pp.334-341
    • /
    • 2008
  • Ballast track needs maintenance works because it is supported by the compressible trackbed and subgrade layers. Maintenance works are essential to secure riding comfort and extend the life cycle of it. The necessities of maintenance works are determined from track irregularities measured by EM120. Track irregularities is the results of the track deformation. Therefore, it is natural to evaluate the cause of it. This paper focuses on the points the track irregularities come from the trackbed and the subgrade. Nondestructive techniques, such as Ground Penetrating Radar (GPR) and Portable Falling Weight Deflectometer (PFWD) are applied to evaluate the trackbed conditions, ballast layer thickness and vertical track stiffness, in the test section 500m long of Gyungbu line. The trackbed investigation results are compared with the track irregularities measured by EM120 and maintenance works. Conclusively, it was found that some maintenance works were unnecessary on the test section.