• Title/Summary/Keyword: railway ballast

Search Result 282, Processing Time 0.026 seconds

Developing Track Ballast Characteristic Guideline In Order To Evaluate Its Performance

  • Sadeghi, J.M.;Zakeri, J. Ali;Najar, M. Emad Motieyan
    • International Journal of Railway
    • /
    • v.9 no.2
    • /
    • pp.27-35
    • /
    • 2016
  • In spite of recent advances in ballasted railway track, the correct choice of ballast for rail track is still considered critical because aggregates progressively deteriorate under traffic loading and environmental exposures. Various ballast requirements, functions and duties have been defined by researchers, railway companies and countries' regulations even though it needs to be integrated to make following proper decision during track operation and maintenance. A proper understanding of ballast properties and suitable tests are prerequisites for minimizing maintenance costs. This paper presents a capable classification for ballast characteristics which need to be investigated beforehand to such a way, firstly to assign ballast functions, secondly need to clarify ballast requirements, thirdly to map appropriate tests to evaluate ballast characteristics and then it must be such that if ballast cannot carry out one of these duties, be able to call there is ballast defect. The paper is structured in order to achieve these objectives.

Experimental investigation of effects of sand contamination on strain modulus of railway ballast

  • Kian, Ali R. Tolou;Zakeri, Jabbar A.;Sadeghi, Javad
    • Geomechanics and Engineering
    • /
    • v.14 no.6
    • /
    • pp.563-570
    • /
    • 2018
  • Ballast layer has an important role in vertical stiffness and stability of railway track. In most of the Middle East countries and some of the Asian ones, significant parts of railway lines pass through desert areas where the track (particularly ballast layer) is contaminated with sands. Despite considerable number of derailments reported in the sand contaminated tracks, there is a lack of sufficient studies on the influences of sand contamination on the ballast vertical stiffness as the main indicator of track stability. Addressing this limitation, the effects of sand contamination on the mechanical behavior of ballast were experimentally investigated. For this purpose, laboratory tests (plate load test) on ballast samples with different levels of sand contamination were carried out. The results obtained were analyzed leading to derive mathematical expressions for the strain modulus ($E_V$) as a function of the ballast level of contamination. The $E_V$ was used as an index for evaluation of the load-deformation characteristics and bearing capacity of track substructure. The critical limit of sand contamination, after which the $E_V$ of the ballast reduces drastically, was obtained. It was shown that the obtained research results improve the current track maintenance approach by providing key guides for the optimization of ballast maintenance planning (the timing of ballast cleaning or renewal).

A review on modelling and monitoring of railway ballast

  • Ngamkhanong, Chayut;Kaewunruen, Sakdirat;Baniotopoulos, Charalampos
    • Structural Monitoring and Maintenance
    • /
    • v.4 no.3
    • /
    • pp.195-220
    • /
    • 2017
  • Nowadays, railway system plays a significant role in transportation, conveying cargo, passengers, minerals, grains, and so forth. Railway ballasted track is a conventional railway track as can be seen all over the world. Ballast, located underneath the sleepers, is the most important elements on ballasted track, which has many functions and requires routine maintenance. Ballast needs to be maintained frequently to prevent rail buckling, settlement, misalignment so that ballast has to be modelled accurately. Continuum model was introduced to model granular material and was extended in ballast. However, ballast is a heterogeneous material with highly nonlinear behaviour. Hence, ballast could not be modelled accurately in continuum model due to the discontinuities nature and material degradation of ballast. Discrete element modelling (DEM) is proposed as an alternative approach that provides insight into constitutive model, realistic particle, and contact algorithm between each particle. DEM has been studied in many recent decades. However, there are limitations due to the high computational time and memory consumption, which cause the lack of using in high range. This paper presents a review of recent ballast modelling with benefits and drawbacks. Ballast particles are illustrated either circular, circular crump, spherical, spherical crump, super-quadric, polygonal and polyhedral. Moreover, the gaps and limitations of previous studies are also summarized. The outcome of this study will help the understanding into different ballast modelling and particle. The insight information can be used to improve ballast modelling and monitoring for condition-based track maintenance.

An Experimental and Analytical study on the Steel Plate Girder Railway bridge in the applying External Post-tensioning Method (강철도교에 대한 외부 후긴장 보강공법의 적용에 관한 실험 및 해석적 연구)

  • Park, Young-Hoon;Cho, Sun-Kyu;Choi, Jung-Youl;Park, Yong-Gul
    • Journal of the Korean Society for Railway
    • /
    • v.9 no.2 s.33
    • /
    • pp.151-159
    • /
    • 2006
  • It analyzed the mechanical behaviors of non-ballasted railway bridge (steel plate girder type) with ballast reinforced on the finite element analysis, field test and laboratory test far the static and dynamic responses. The major objective of this study is to investigate the effects and application of reinforcement for steel plate girder railway bridge by the external post-tensioning method. The reinforcement of non-ballast railway bridge had obviously stable dynamic behaviors due to the additional dead force which was ballast. But in case of static behaviors, static displacements and stresses had increased nearly the allowable values. Therefore we analyzed the mechanical behaviors of non-ballasted railway bridge with ballast reinforced and external post-tensioning reinforced on the finite element analysis and laboratory test for the static and dynamic behavior. As a result, the reinforcement of ballasted railway bridge the external post-tensioning method are obviously effective for the additional dead force which is ballast. The analytical and experimental study are carried out to investigate the post-tension force decrease bending behavior and deflection in composite bridge for serviceability. The servicing railway bridge with ballast reinforced has need of the reasonable reinforcement measures which could be reducing the effect of additional dead load that degradation phenomenon of structure by an unusual. stresses and a drop durability.

Vehicle/track dynamic interaction considering developed railway substructure models

  • Mosayebi, Seyed-Ali;Zakeri, Jabbar-Ali;Esmaeili, Morteza
    • Structural Engineering and Mechanics
    • /
    • v.61 no.6
    • /
    • pp.775-784
    • /
    • 2017
  • This study is devoted to developing many new substructure models for ballasted railway track by using the pyramid model philosophy. As the effect of railway embankment has been less considered in the previous studies in the field of vehicle/track interaction, so the present study develops the pyramid models in the presence of railway embankment and implements them in vehicle/track interaction dynamic analyses. Considering a moving car body as multi bodies with 10 degrees of freedom and the ballasted track including rail, sleeper, ballast, subgrade and embankment, two categories of numerical analyses are performed by considering the new substructure systems including type A (initiation of stress overlap areas in adjacent sleepers from the ballast layer) or type B (initiation of stress overlap areas in adjacent sleepers from the subgrade layer). A comprehensive sensitivity analyses are performed on effective parameters such as ballast height, sleepers spacing and sleeper width. The results indicate that the stiffness of subgrade, embankment and foundation increased by increasing the ballast height. Also, by increasing the ballast height, rail and ballast vertical displacement decreased.

Evaluation of the Status of Ballast on the Bridge Expansion f)int using HWAW method (HWAW방법을 이용한 고속철도 교량 상판 신축 이음부 도상 자갈의 이완상태 및 이완범위 평가)

  • Park, Hyung-Choon;Park, Jun-O;Jin, Nam-Hee;Noh, Hee-Kwan;Bae, Hyun-Jung
    • Proceedings of the KSR Conference
    • /
    • 2009.05a
    • /
    • pp.997-1002
    • /
    • 2009
  • The local loosening of ballast supporting railway tract cause a differential vertical tract settlement. In the bridge, the temperature change make bridge deck to contract and expand, and this movement cause local loosening of ballast on the bridge expansion joint. Therefore, the evaluation of the status of ballast on the bridge expansion joint is important for the track maintenance of the high-speed railway. In this paper, hwaw method was applied to evaluate the status of ballast on the bridge expansion joint. HWAW method is non-destructive test to evaluate 2-D shear wave velocity map along the railway. Shear wave velocity is directly related with status of ballast. In this research, hwaw method was applied two different types of bridges and determine the degree and the range of the ballast loosening caused by movement of the bridge expansion joint.

  • PDF

Aggregate Criterion for Paved Track Considering Recycling of Railway Ballast (도상자갈 재활용을 고려한 포장궤도용 골재 기준)

  • Lee, Il-Wha
    • Journal of the Korean Society for Railway
    • /
    • v.12 no.4
    • /
    • pp.481-487
    • /
    • 2009
  • On the paved track, the railway ballast is used as aggregate for the filling layer using the pre-packed concrete method. The condition of ballast as the paved track aggregate ensure that the compressive strength, particle distribution size for the pouring and surface clearance to increase the adhesive strength with mortar. It is profitable to recycle the existing railway ballast as a economical supply. In order to increase recycling characteristic, it is necessary to apply the similar criterion which does not exceed the conventional railway ballast criterion. Consequently, this paper was to investigate physical characteristics of existing ballast, particle size distribution, compressive and flexural strength, bearing capacity and filling capacity to prepare the aggregate's recycling. As a result, optimized aggregate criterion is suggested.

Stress transfer mechanism of ballast bed using DEM (Discrete Element Method) (DEM을 이용한 자갈도상의 응력분포에 관한 연구)

  • Kim Dae-Sang
    • Journal of the Korean Society for Railway
    • /
    • v.9 no.1 s.32
    • /
    • pp.7-11
    • /
    • 2006
  • Ballast is an important component of railway track structures. The granular ballast can be modelled using [mite or discrete element methods. The DE method has advantages to enable us to analyze the microstructure of granular materials and to exhibit information which cannot be assessed using FE methods. In this paper, sleeper, the ballast, and ballast mat in the high-speed railroad line are modelled using two-dimensional discrete circle and line elements. The stress transferred from the sleeper via the ballast to the subgrade is analyzed. In addition, the shape and angle of stress distribution of ballast bed is evaluated with different boundary conditions for the high-speed railroad line.

Study on Effectiveness of Selection for Railway Ballast : Case Study on A Quarry in northen France (철도 밸러스트 선정 효율성에 대한 고찰 : 프랑스 채석장에 대한 사례연구)

  • Woo, Ik
    • Tunnel and Underground Space
    • /
    • v.25 no.6
    • /
    • pp.487-495
    • /
    • 2015
  • The specification for selecting railway ballast in France is introduced in this study and the effectiveness of selection for railway ballast is studied for the case of a quarry located in northen France. The quality of railway ballast is, in general, estimated depending on the grain distribution and mainly of the resistance against abrasion. The resistance against abrasion is obtained by both Los Angeles abrasion test and Micro Deval test, which determine the ballast quality suitable whether for high speed railway or classical railway. This study analyzed the correlation between the abrasion index obtained from the abrasion tests for the aggregates sampled at three different stages among ballast production procedure at the quarry. A high correlation is determined between Los Angeles Abrasion index (LA) and Micro Deval index (MDA) and also between abrasion indices of different aggregates. Particularly, this correlation between the abrasion indices allows to estimate the quality of ballast at the final stage from the aggregates at the site in a quarry within the margin of error.

Development of 2-D DEM (Discrete Element Method) algorithm to model ballast and sleeper (2차원 개별요소법을 이용한 도상자갈 생성 알고리즘 개발)

  • 김대상;황선근
    • Journal of the Korean Society for Railway
    • /
    • v.6 no.3
    • /
    • pp.174-178
    • /
    • 2003
  • This paper presents the development of 2-dimensional discrete element algorithm to generate circle and line elements for the simulation of the ballast and sleeper in railway. An example of randomly distributed circle elements show a good applicability of this algorithm for the modeling of the behaviors of ballast. The output about unbalaned force, particle velocity, and total energy conservation from the code is evaluated to check if the calculation is conducted properly.